The cylindrical pores of track-etched membranes offer excellent environments for studying the effects of confinement on crystallization as the pore diameter is readily varied and the anisotropic morphologies can direct crystal orientation. However, the inability to image individual crystals within the pores in this system has prevented many of the underlying mechanisms from being characterized. Here, we study the crystallization of calcium sulfate within track-etched membranes and reveal that oriented gypsum forms in 200 nm diameter pores, bassanite in 25-100 nm pores and anhydrite in 10 nm pores. The crystallization pathways are then studied by coating the membranes with an amorphous titania layer prior to mineralization to create electron transparent nanotubes that protect fragile precursor materials. By visualizing the evolutionary pathways of the crystals within the pores we show that the product single crystals derive from multiple nucleation events and that orientation is determined at early reaction times. Finally, the transformation of bassanite to gypsum within the membrane pores is studied using experiment and potential mean force calculations and is shown to proceed by localized dissolution/reprecipitation. This work provides insight into the effects of confinement on crystallization processes, which is relevant to mineral formation in many real-world environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283488 | PMC |
http://dx.doi.org/10.1039/d3sc00869j | DOI Listing |
Polymers (Basel)
December 2024
Institute for Microelectronics and Microsystems, National Research Council, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy.
Clear aligners have transformed orthodontic care by providing an aesthetic, removable alternative to traditional braces. However, their significant environmental footprint, contributing to approximately 15,000 tons of plastic waste annually, poses a critical challenge. To address this issue, advancements in 4D printing have introduced "smart" aligners with shape memory properties, enabling reshaping and reducing the number of aligners required per treatment.
View Article and Find Full Text PDFEur J Ophthalmol
January 2025
Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea.
Purpose: This study aimed to report a case of microplastics (MPs) detection in a pterygium patient's tissue.
Case Report: A pterygium specimen was obtained from the right eye of a 43-year-old woman by surgical removal of a recurred pterygium. The number, morphology, and material type of the MPs in pterygium were identified using Raman microscopy and scanning electron microscopy.
ACS Omega
December 2024
Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, South Carolina 29117, United States.
Food packaging industries generally use petroleum-based packaging materials that are non-biodegradable and harmful to the environment. Eco-friendly polymers such as chitosan (CH), gelatin (GE), and cellulose nanocrystals (CNCs) are leading viable alternatives to plastics traditionally used in packaging because of their higher functionality and biodegradability. In this study, an innovative approach has been disclosed to prepare new packaging materials by utilizing chitosan, gelatin, and cellulose nanocrystals (CNCs) through a simple solution casting method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China. Electronic address:
Plant-derived antibacterial agents are increasingly pivotal in mitigating the escalating threat posed by pathogenic microorganisms. Dihydromyricetin (DMY), a plant bioactive compound prevalent in Ampelopsis grossedentata, exhibits remarkable antibacterial properties. However, its poor solubility in water significantly hinders its application in antibacterial therapies, necessitating the exploration of suitable carriers for the loading and sustained release of DMY.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!