Background: Immune checkpoint inhibitors (ICIs) such as programmed cell death protein-1 (PD-1) inhibitors or PD-1 ligand-1 (PD-L1) inhibitors have led to remarkable improvement in outcomes of non-small cell lung cancer (NSCLC). Unfortunately, the significant benefits of ICI therapy are frequently limited by resistance to treatment and adverse effects, and the predictive value of pre-treatment tumor tissue PD-L1 expression is limited. Development of less invasive biomarkers that could identify responders and non-responders in early on-treatment could markedly improve the treatment regimen. Accumulating evidence suggests that baseline gut microbiota profile is associated with response to PD-1/PD-L1 blockade therapy. However, change in the gut microbiome composition during PD-1/PD-L1 blockade therapy and its relation to response remain unclear.
Methods: Here, we analyzed pre- and on-treatment fecal samples from five NSCLC patients receiving anti-PD-1 immunotherapy, alone or in tandem with chemotherapy, and performed 16S rRNA sequencing.
Results: The overall alpha diversity of the baseline gut microbiome was similar between three responders and two non-responders. While the gut microbiome composition remained stable overall during treatment (R2 = 0.145), responders showed significant changes in microbiome diversity between pre- and on-treatment samples during anti-PD-1 therapy compared to non-responders (P = 0.0274). Within the diverse microbiota, responders showed decreases in the abundance of genera , , , , and , and increase in abundance of . In contrast, non-responders demonstrated on-treatment increases in genera , , , and , and decrease in abundance of .
Conclusions: This pilot study identified a substantial change in gut microbiome diversity between pre- and on-treatment samples in NSCLC patients responding to anti-PD-1 therapy compared to non-responders. Our findings highlight the potential utility of gut microbiota dynamics as a noninvasive biomarker to predict response to PD-1/PD-L1 blockade therapy for a wide variety of malignancies, which sets a path for future investigation in larger prospective studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284636 | PMC |
http://dx.doi.org/10.14740/wjon1587 | DOI Listing |
BMC Nutr
January 2025
Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany.
Background: Obesity is a multifactorial disease reaching pandemic proportions with increasing healthcare costs, advocating the development of better prevention and treatment strategies. Previous research indicates that the gut microbiome plays an important role in metabolic, hormonal, and neuronal cross-talk underlying eating behavior. We therefore aim to examine the effects of prebiotic and neurocognitive behavioral interventions on food decision-making and to assay the underlying mechanisms in a Randomized Controlled Trial (RCT).
View Article and Find Full Text PDFAnim Microbiome
January 2025
China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Probiotics as green inputs have been reported to regulate metabolism and immunity of fish. However, the mechanisms by which probiotics improve growth and health of fish are unclear. Therefore, the aim of this study was to investigate the effect of Bacillus subtilis HGCC-1, an indigenous probiotic isolated from fish, on growth performance, host lipid metabolism, liver inflammation and gut microbiota of golden pompano.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
Background: The conversion of primary bile acids to secondary bile acids by the gut microbiota has been implicated in colonic inflammation. This study investigated the role of gut microbiota related bile acid metabolism in colonic inflammation in both patients with inflammatory bowel disease (IBD) and a murine model of dextran sulfate sodium (DSS)-induced colitis.
Methods: Bile acids in fecal samples from patients with IBD and DSS-induced colitis mice, with and without antibiotic treatment, were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS).
Crit Care
January 2025
Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, 630 West 168th Street, P&S 3-401, New York, NY, 10032, USA.
Background: Patients admitted to the intensive care unit (ICU) often have gut colonization with pathogenic bacteria and such colonization is associated with increased risk for death and infection. We conducted a trial to determine whether a prebiotic would improve the gut microbiome to decrease gut pathogen colonization and decrease downstream risk for infection among newly admitted medical ICU patients with sepsis.
Methods: This was a randomized, double-blind, placebo-controlled trial of adults who were admitted to the medical ICU for sepsis and were receiving broad-spectrum antibiotics.
BMC Gastroenterol
January 2025
Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Objective: Summaries of the relationships between the microbiota and liver cirrhosis and their conclusions are not consistent. This study describes microbial differences in patients with liver cirrhosis by performing a meta-analysis.
Methods: We searched PubMed, Embase, Web of Science, and the Cochrane Library and collected related articles published before March 10, 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!