We report on the development of a novel class of diaryl ether herbicides. After the discovery of a phenoxybenzoic acid with modest herbicidal activity, optimization led to several molecules with improved control of broadleaf and grass weeds. To facilitate this process, we first employed a three-step combinatorial approach, then pivoted to a one-step Ullmann-type coupling that provided faster access to new analogs. After determining that the primary target site of our benchmark diaryl ethers was acetolactate synthase (ALS), we further leveraged this copper-catalyzed methodology to conduct a scaffold hopping campaign in the hope of uncovering an additional mode of action with fewer documented cases of resistance. Our comprehensive and systematic investigation revealed that while the herbicidal activity of this area seems to be exclusively linked to ALS inhibition, our molecules represent a structurally distinct class of Group 2 herbicides. The structure-activity relationships that led us to this conclusion are described herein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.3c01285 | DOI Listing |
Chem Commun (Camb)
December 2024
Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany.
A diverse set of hydroxy-benzo[]iodadioxaphosphinine oxides and derived diaryl iodonium salts are prepared and two examples are characterized by X-ray crystallography, featuring an out-of-plane geometry of the hypervalent bond for both compound classes. Treatment of the phosphate-stabilized diaryliodonium salts with Ca(OH) results in an efficient base-induced intramolecular aryl migration under aqueous conditions, yielding iodo-substituted diaryl ethers with yields up to 94%. Our findings highlight the synthetic potential of this previously underexplored compound class in organic transformations.
View Article and Find Full Text PDFChemistry
November 2024
Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-41296, Sweden.
The synthesis of biaryl amides, which are prevalent motifs in bioactive molecules, often necessitates lengthy and inefficient procedures. To address these limitations, catalytic C-H activation protocols have emerged, enabling the direct ortho-arylation of aryl amides. However, these protocols often suffer from issues such as lack of selectivity, reliance on stoichiometric oxidants, and the requirement for excess reagents and harsh reaction conditions.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.
Reagents capable of concerted proton-electron transfer (CPET) reactions can access reaction pathways with lower reaction barriers compared to stepwise pathways involving electron transfer (ET) and proton transfer (PT). To realize reductive multielectron/proton transformations involving CPET, one approach that has shown recent promise involves coupling a cobaltocene ET site with a protonated arylamine Brønsted acid PT site. This strategy colocalizes the electron/proton in a matter compatible with a CPET step and net reductive electrocatalysis.
View Article and Find Full Text PDFChem Sci
September 2024
Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University Lanzhou 730000 China
Sulfilimines, a privileged class of -S(iv)[double bond, length as m-dash]N- functional groups found in nature, have been exploited as valuable building blocks in organic synthesis and as pharmacophores in drug discovery, and have aroused significant interest in the chemical community. Nevertheless, strategies for late-stage introduction of sulfilimines into peptides and proteins have still met with limited success. Herein, we have developed a method of introducing biological sulfilimine fragments into peptides by an intermolecular sulfur atom transfer cascade reaction, utilizing hydroxylamine condensed with the acid moieties of peptides and varied diaryl disulfides.
View Article and Find Full Text PDFJACS Au
August 2024
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden.
Herein, we disclose a convenient protocol for the α-diarylation of carbon nucleophiles to yield heavily functionalized quaternary products. Diaryliodonium salts are utilized to transfer both aryl groups under transition-metal-free conditions, which enables an atom-efficient and high-yielding method with broad functional group tolerance. The methodology is amenable to a wide variety of carbon nucleophiles and can be utilized in late-stage functionalization of complex arenes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!