Next-generation sequencing technologies have enabled many advances across diverse areas of biology, with many benefiting from increased sample size. Although the cost of running next-generation sequencing instruments has dropped substantially over time, the cost of sample preparation methods has lagged behind. To counter this, researchers have adapted library miniaturization protocols and large sample pools to maximize the number of samples that can be prepared by a certain amount of reagents and sequenced in a single run. However, due to high variability of sample quality, over and underrepresentation of samples in a sequencing run has become a major issue in high-throughput sequencing. This leads to misinterpretation of results due to increased noise, and additional time and cost rerunning underrepresented samples. To overcome this problem, we present a normalization method that uses shallow iSeq sequencing to accurately inform pooling volumes based on read distribution. This method is superior to the widely used fluorometry methods, which cannot specifically target adapter-ligated molecules that contribute to sequencing output. Our normalization method not only quantifies adapter-ligated molecules but also allows normalization of feature space; for example, we can normalize to reads of interest such as non-ribosomal reads. As a result, this normalization method improves the efficiency of high-throughput next-generation sequencing by reducing noise and producing higher average reads per sample with more even sequencing depth. IMPORTANCE High-throughput next generation sequencing (NGS) has significantly contributed to the field of genomics; however, further improvements can maximize the potential of this important tool. Uneven sequencing of samples in a multiplexed run is a common issue that leads to unexpected extra costs or low-quality data. To mitigate this problem, we introduce a normalization method based on read counts rather than library concentration. This method allows for an even distribution of features of interest across samples, improving the statistical power of data sets and preventing the financial loss associated with resequencing libraries. This method optimizes NGS, which already has huge importance across many areas of biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469589PMC
http://dx.doi.org/10.1128/msystems.00006-23DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
16
normalization method
16
based read
12
sequencing
11
high-throughput next-generation
8
areas biology
8
time cost
8
adapter-ligated molecules
8
method
7
normalization
6

Similar Publications

Here, we report the complete genome sequence of a new carlavirus causing mosaic on mint plants in Italy, which we have tentatively named "mint virus C" (MVC). Flexuous particles of around 600 nm were observed using transmission electron microscopy, and next-generation sequencing was performed to determine the nucleotide sequence of the MVC genome, which was found to be 8558 nt long, excluding the poly(A) tail, and shows the typical organization of a carlavirus. The putative proteins encoded by MVC are 44-56% identical to the closest matches in the NCBI database, suggesting that MVC should be considered a member of a new species in the genus Carlavirus.

View Article and Find Full Text PDF

Targeted therapy has emerged as a promising option in cancer treatment, driven by advances in the understanding of DNA changes and the molecular basis of cancer. This article provides an overview of next-generation sequencing and types of genetic alterations, common cancer biomarkers, a review of circulating tumor DNA testing and its applications for oncology treatments, how to read a genomic testing report, examples of targeted therapy for cancer pathologic variants and tumor markers, and the implications for nursing practice in this emerging field.

View Article and Find Full Text PDF

LZZAY01 accelerated autophagy and apoptosis in colon cancer cells and improved gut microbiota in CAC mice.

Microbiol Spectr

January 2025

Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China.

Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects.

View Article and Find Full Text PDF

Genetic Characteristics of the Rat Fibroblast Cell Line Rat-1.

Cells

December 2024

Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH, University Hospital Aachen, D-52074 Aachen, Germany.

The Rat-1 cell line was established as a subclone of the parental rat fibroblastoid line F2408, derived from Fisher 344 rat embryos. Rat-1 cells are widely used in various research fields, especially in cancer biology, to study the effects of oncogenes on cell proliferation. They are also crucial for investigating signal transduction pathways and play a key role in drug testing and pharmacological studies due to their rapid proliferation.

View Article and Find Full Text PDF

Using immunotherapeutic agents like inotuzumab ozogamicin (InO), blinatumomab, or chimeric antigen receptor T (CAR T)-cell therapy in frontline adult B-cell acute lymphoblastic leukemia (B-ALL) therapy is promising. These agents are mostly well tolerated and have different toxicity profiles than conventional chemotherapy, enabling their combination with chemotherapy. Additionally, they have often been shown to overcome the traditional adverse ALL risk features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!