High‑altitude acute hypoxia is commonly associated with respiratory cardiovascular diseases. The inability to adapt to acute hypoxia may lead to cardiovascular dysfunction, lung injury and even death. Therefore, understanding the molecular basis of the adaptation to high‑altitude acute hypoxia may reveal novel therapeutic approaches with which to counteract the detrimental consequences of hypoxia. In the present study, a high‑altitude environment was simulated in a rat model in order to investigate the role of the high mobility group protein‑1 (HMGB1)/receptor for advanced glycation end products (RAGE)/NF‑κB and F2/Rho signaling pathways in lung injury induced by acute hypoxia. It was found that acute hypoxia caused inflammation through the HMGB1/RAGE/NF‑κB pathway and coagulation dysfunction through the F2/Rho pathway, both of which may be key processes in acute hypoxia‑induced lung injury. The present study provides new insight into the molecular basis of lung injury induced by acute hypoxia. The simultaneous activation of the HMGB1/RAGE/NF‑κB and F2/Rho signaling pathways plays a critical role in hypoxia‑induced inflammatory responses and coagulation abnormalities, and provides a theoretical basis for the development of potential therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10555482PMC
http://dx.doi.org/10.3892/ijmm.2023.5270DOI Listing

Publication Analysis

Top Keywords

acute hypoxia
28
lung injury
20
injury induced
12
induced acute
12
coagulation abnormalities
8
acute
8
hypoxia
8
high‑altitude acute
8
molecular basis
8
f2/rho signaling
8

Similar Publications

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Pain Perception Threshold in Young High-Altitude Natives After Acute Exposure to Severe Hypoxic Conditions.

Oxygen (Basel)

March 2025

Centro de Investigación en Medicina de Altura (CIMA), Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima 15001, Peru.

Previous studies indicate that individuals at high altitudes have a lower pain threshold than those living at sea level. This study evaluates the differences in pain perception among young people living at an altitude of 3800 m and after acute exposure to a severe hypoxic environment at more than 5100 m. Fourteen people (BMI of 22.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Ischemic stroke can cause damage to neurons, resulting in neurological dysfunction. The main treatments in the acute phase include intravenous thrombolysis, endovascular stent-assisted vascular thrombectomy and antiplatelet therapy. Due to the limitations of the time window and the risk of early intracranial hemorrhage, finding active treatment plans is crucial for improving therapy.

View Article and Find Full Text PDF

To what extent sildenafil, a selective inhibitor of the type-5 phosphodiesterase modulates systemic redox status and cerebrovascular function during acute exposure to hypoxia remains unknown. To address this, 12 healthy males (aged 24 ± 3 y) participated in a randomized, placebo-controlled crossover study involving exposure to both normoxia and acute (60 min) hypoxia (Fi = 0.14), followed by oral administration of 50 mg sildenafil and placebo (double-blinded).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!