A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bayesian multivariate longitudinal model for immune responses to Leishmania: A tick-borne co-infection study. | LitMetric

While many Bayesian state-space models for infectious disease processes focus on population infection dynamics (eg, compartmental models), in this work we examine the evolution of infection processes and the complexities of the immune responses within the host using these techniques. We present a joint Bayesian state-space model to better understand how the immune system contributes to the control of Leishmania infantum infections over the disease course. We use longitudinal molecular diagnostic and clinical data of a cohort of dogs to describe population progression rates and present evidence for important drivers of clinical disease. Among these results, we find evidence for the importance of co-infection in disease progression. We also show that as dogs progress through the infection, parasite load is influenced by their age, ectoparasiticide treatment status, and serology. Furthermore, we present evidence that pathogen load information from an earlier point in time influences its future value and that the size of this effect varies depending on the clinical stage of the dog. In addition to characterizing the processes driving disease progression, we predict individual and aggregate patterns of Canine Leishmaniasis progression. Both our findings and the application to individual-level predictions are of direct clinical relevance, presenting possible opportunities for application in veterinary practice and motivating lines of additional investigation to better understand and predict disease progression. Finally, as an important zoonotic human pathogen, these results may support future efforts to prevent and treat human Leishmaniosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123579PMC
http://dx.doi.org/10.1002/sim.9837DOI Listing

Publication Analysis

Top Keywords

disease progression
12
immune responses
8
bayesian state-space
8
better understand
8
disease
6
progression
5
bayesian multivariate
4
multivariate longitudinal
4
longitudinal model
4
model immune
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!