Background: Optimal functional recovery following peripheral nerve injuries (PNIs) is dependent upon early recognition and prompt referral to specialist centres for appropriate surgical intervention. Technologies which facilitate the early detection of PNI would allow faster referral rates and encourage improvements in patient outcomes. Serum Neurofilament light chain (NfL) measurements are cheaper to perform, easier to access and interpret than many conventional methods used for nerve injury diagnosis, such as electromyography and/or magnetic resonance imaging assessments, but changes in serum NfL levels following traumatic PNI have not been investigated. This pre-clinical study aimed to determine whether serum NfL levels can: (1) detect the presence of a nerve trauma and (2) delineate between different severities of nerve trauma.

Methods: A rat sciatic nerve crush and common peroneal nerve crush were implemented as controlled animal models of nerve injury. At 1-, 3-, 7- and 21-days post-injury, serum samples were retrieved for analysis using the SIMOA® NfL analyser kit. Nerve samples were also retrieved for histological analysis. Static sciatic index (SSI) was measured at regular time intervals following injury.

Results: Significant 45-fold and 20-fold increases in NfL serum levels were seen 1-day post-injury following sciatic and common peroneal nerve injury, respectively. This corresponded with an eightfold higher volume of axons injured in the sciatic compared to the common peroneal nerve (p < .001). SSI measurements post-injury revealed greater reduction in function in the sciatic crush group compared with the common peroneal crush group.

Conclusions: NfL serum measurements represent a promising method for detecting traumatic PNI and stratifying their severity. Clinical translation of these findings could provide a powerful tool to improve the surgical management of nerve-injured patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659102PMC
http://dx.doi.org/10.1111/jns.12576DOI Listing

Publication Analysis

Top Keywords

nerve injury
12
common peroneal
12
peroneal nerve
12
nerve
10
serum neurofilament
8
neurofilament light
8
light chain
8
nerve trauma
8
serum nfl
8
nfl levels
8

Similar Publications

Anatomical Characterization of the Motor Branch to the Fourth Lumbrical: A Cadaver Study.

J Hand Surg Am

January 2025

Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, FL.

Purpose: The branching pattern of the deep motor branch of the ulnar nerve (DBUN) in the hand is complex. The anatomy of the motor branch innervating the fourth lumbrical (4L), where paralysis results in a claw hand deformity after ulnar nerve injury, is not well defined. This cadaver study focused on mapping and defining anatomical landmarks in relation to the motor branch to the 4L.

View Article and Find Full Text PDF

Preoperative Vascular and Cranial Nerve Imaging in Skull Base Tumors.

Cancers (Basel)

December 2024

Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.

Skull base tumors such as meningiomas and schwannomas are often pathologically benign. However, surgery for these tumors poses significant challenges because of their proximity to critical structures such as the brainstem, cerebral arteries, veins, and cranial nerves. These structures are compressed or encased by the tumor as they grow, increasing the risk of unintended injury to these structures, which can potentially lead to severe neurological deficits.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

Paraneoplastic cerebellar degeneration (PCD) is a rapidly progressive, immune-mediated syndrome characterized by the degeneration of Purkinje cells, often associated with the presence of antibodies targeting intracellular antigens within these cells. These autoantibodies are implicated in the induction of cytotoxicity, leading to Purkinje cell death, as demonstrated in in vitro models. However, the precise roles of antibodies and T lymphocytes in mediating neuronal injury remain a subject of ongoing research, with T cells appearing to be the main effectors of cerebellar injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!