Diabetes mellitus (DM), currently affecting more than 537 million people worldwide is a chronic disease characterized by impaired glucose metabolism resulting from a defect in insulin secretion, action, or both due to the loss or dysfunction of pancreatic β cells. Since cadaveric islet transplantation using Edmonton protocol has served as an effective intervention to restore normoglycaemia in T1D patients for months, stem cell-derived β cells have been explored for cell replacement therapy for diabetes. Thus, great effort has been concentrated by scientists on developing in vitro differentiation protocols to realize the therapeutic potential of hPSC-derived β cells. However, most of the 2D traditional monolayer culture could mainly generate insulin-producing β cells with immature phenotype. In the body, pancreatic islets are 3D cell arrangements with complex cell-cell and cell-ECM interactions. Therefore, it is important to consider the spatial organization of the cell in the culture environment. More recently, 3D cell culture platforms have emerged as powerful tools with huge translational potential, particularly for stem cell research. 3D protocols provide a better model to recapitulate not only the in vivo morphology, but also the cell connectivity, polarity, and gene expression mimicking more physiologically the in vivo cell niche. Therefore, the 3D culture constitutes a more relevant model that may help to fill the gap between in vitro and in vivo models. Interestingly, most of the 2D planar methodologies that successfully generated functional hPSC-derived β cells have switched to a 3D arrangement of cells from pancreatic progenitor stage either as suspension clusters or as aggregates, suggesting the effect of 3D on β cell functionality. In this review we highlight the role of dimensionality (2D vs 3D) on the differentiation efficiency for generation of hPSC-derived insulin-producing β cells in vitro. Consequently, how transitioning from 2D monolayer culture to 3D spheroid would provide a better model for an efficient generation of fully functional hPSC-derived β cells mimicking in vivo islet niche for diabetes therapy or drug screening. Video Abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286450PMC
http://dx.doi.org/10.1186/s12964-023-01171-8DOI Listing

Publication Analysis

Top Keywords

monolayer culture
12
functional hpsc-derived
12
hpsc-derived cells
12
cells
9
efficiency generation
8
pancreatic cells
8
cells vitro
8
cell
8
insulin-producing cells
8
cell culture
8

Similar Publications

Genes and proteins expression profile of 2D vs 3D cancer models: a comparative analysis for better tumor insights.

Cytotechnology

April 2025

University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413 India.

When juxtaposed with 2D cell culture models, multicellular tumor spheroids demonstrate a capacity to faithfully replicate certain features inherent to solid tumors. These include spatial architecture, physiological responses, the release of soluble mediators, patterns of gene expression, and mechanisms of drug resistance. The morphological and behavioural similarities between 3D-cultured cells and cells within tumor masses highlight the potential of these models in studying cancer biology and drug responses.

View Article and Find Full Text PDF

Selective activity of Tabebuia avellanedae against Giardia duodenalis infecting organoid-derived human gastrointestinal epithelia.

Int J Parasitol Drugs Drug Resist

January 2025

Department of Infectious Diseases, Unit of Foodborne and Neglected Parasitic Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy. Electronic address:

Giardia duodenalis is a widespread intestinal protozoan that affects mammals, including humans. Symptoms can range from being subclinical to causing severe abdominal pain and diarrhoea. Giardiasis often requires repeated treatment with synthetic drugs like metronidazole.

View Article and Find Full Text PDF

Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells.

STAR Protoc

January 2025

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.

View Article and Find Full Text PDF

Engineered living materials (ELMs), which usually comprise bacteria, fungi, or animal cells entrapped in polymeric matrices, offer limitless possibilities in fields like drug delivery or biosensing. Determining the conditions that sustain ELM performance while ensuring compatibility with ELM hosts is essential before testing them in vivo. This is critical to reduce animal experimentation and can be achieved through investigations.

View Article and Find Full Text PDF

The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!