ExacTrac Dynamic (ETD) provides a Deep Inspiration Breath Hold (DIBH) workflow for breast patients. Stereoscopic x-ray imaging combined with optical and thermal mapping allows localisation against simulation imaging, alongside surface guided breath hold monitoring. This work aimed to determine appropriate imaging parameters, the optimal Hounsfield Unit (HU) threshold for patient contour generation and workflow evaluation via end-to-end (E2E) positioning using a custom breast DIBH phantom. After localisation via existing Image Guidance (IG), stereoscopic imaging was performed with a range of parameters to determine best agreement. Similarly, residual errors in prepositioning were minimised using a range of HU threshold contours. E2E positioning was completed for clinical workflows allowing residual isocentre position error measurement and existing IG comparison. Parameters of 60 kV and 25mAs were determined appropriate for patient imaging and HU thresholds between -600 HU and -200 HU enabled adequate prepositioning. The average and standard deviation in residual isocentre position error was 1.0 ± 0.9 mm, 0.4 ± 1.0 mm and 0.1 ± 0.5 mm in the lateral, longitudinal and vertical directions, respectively. Errors measured using existing IG were -0.6 ± 1.1 mm, 0.5 ± 0.7 mm and 0.2 ± 0.4 mm in the lateral, longitudinal and vertical directions, and 0.0 ± 1.0, 0.5 ± 1.7 and -0.8 ± 1.8 for pitch roll and yaw. The use of bone weighted matching increased residual error, while simulated reduction of DIBH volume maintained isocentre positioning accuracy despite anatomical changes. This initial testing indicated suitability for clinical implementation during DIBH breast treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480281 | PMC |
http://dx.doi.org/10.1007/s13246-023-01291-y | DOI Listing |
JACC CardioOncol
December 2024
The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
BMC Med Imaging
January 2025
School of Medical Technology, Shaanxi University of Chinese Medicine, Xian Yang, 712046, China.
Objective: This study aims to evaluate the efficacy of two free-breathing magnetic resonance imaging (MRI) sequences-spiral ultrashort echo time (spiral UTE) and radial volumetric interpolated breath-hold examination (radial VIBE).
Methods: Patients were prospectively enrolled between February 2021 and September 2022. All participants underwent both 3T MRI scanning, utilizing the radial VIBE sequence and spiral UTE sequence, as well as standard chest CT imaging.
Clin Transl Radiat Oncol
March 2025
Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
Purpose: To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy (SBRT) of ULT.
Patients And Methods: Analysis is based on 19 patients with ULT who received SMART (10 × 5.0-5.
Radiography (Lond)
January 2025
School of Nursing, The Hong Kong Polytechnic University, Hong Kong. Electronic address:
Introduction: Deep inspiration breath hold technique has shown promise in reducing cardiac toxicity and improving patient outcomes. However, there is a lack of consensus regarding the implementation of abdominal breath hold technique and its impact on cardiac dose. This systematic review and meta-analysis aim to provide insights into the comparative effectiveness of abdominal and thoracic breath hold in mitigating cardiac toxicity during radiation therapy for left-sided breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!