The emergence of a topological transition of the polaritonic dispersion in twisted bilayers of anisotropic van der Waals materials at a given twist angle-the photonic magic angle-results in the diffractionless propagation of polaritons with deep-subwavelength resolution. This type of propagation, generally referred to as canalization, holds promise for the control of light at the nanoscale. However, the existence of a single photonic magic angle hinders such control since the canalization direction in twisted bilayers is unique and fixed for each incident frequency. Here we overcome this limitation by demonstrating multiple spectrally robust photonic magic angles in reconfigurable twisted α-phase molybdenum trioxide (α-MoO) trilayers. We show that canalization of polaritons can be programmed at will along any desired in-plane direction in a single device with broad spectral ranges. These findings open the door for nanophotonics applications where on-demand control is crucial, such as thermal management, nanoimaging or entanglement of quantum emitters.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-023-01582-5DOI Listing

Publication Analysis

Top Keywords

photonic magic
16
multiple spectrally
8
spectrally robust
8
robust photonic
8
magic angles
8
angles reconfigurable
8
α-moo trilayers
8
twisted bilayers
8
photonic
4
magic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!