Penicillin G acylase (PGA) is a strategic enzyme in the production processes of beta-lactam antibiotics. High demand for β-lactam semisynthetic antibiotics explain the genetic and biochemical engineering strategies devoted towards novel ways for PGA production and application. This work presents a fermentation process for the heterologous production of PGA from Alcaligenes faecalis in Bacillus megaterium with optimization. The thermal stability from A. faecalis PGA is considerably higher than other described PGA and the recombinant enzyme is secreted to the culture medium by B. megaterium, which facilitates the separation and purification steps. Media optimization using fractional factorial design experiments was used to identify factors related to PGA activity detection in supernatant and cell lysates. The optimized medium resulted in almost 6-fold increased activity in the supernatant samples when compared with the basal medium. Maximum enzyme activity in optimized medium composition achieves values between 135 and 140 IU/ml. The results suggest a promising model for recombinant production of PGA in B. megaterium with possible extracellular expression of the active enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2023.106327 | DOI Listing |
Sci Total Environ
January 2025
Forest Fire Laboratory (LABIF), Forestry Engineering Department, University of Cordoba, 14071 Cordoba, Spain. Electronic address:
Most Mediterranean ecosystems have been profoundly shaped by wildfires, driving the evolution of plant species. Through photo interpretation and field inventories, this research assessed vegetation dynamics from 1984 to 2021, examining how fire severity and recurrence, key fire regime variables, influenced changes in structure and woody species diversity. Using two burn scars (1988 and 2006), we identified four scenarios dominated by Pinus pinea tree species: control (unburned), areas burned once (either in 1988 or 2006), and twice (in both 1988 and 2006).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Huntington Medical Research Institutes, Pasadena, CA, USA.
Background: Dicarboxylic acids (DCAs) are critically important for intermediate metabolism. Since mitochondrial dysfunction and energy dysregulation are associated with AD pathology, we hypothesize that fluctuations in plasma DCAs would accompany AD pathology.
Method: In an ongoing brain-aging study, we recruited older adults (>65 years) classified as cognitively healthy (CH) after neuropsychological testing.
Background: Traumatic encephalopathy syndrome (TES) is a proposed framework for the clinical syndrome resulting from chronic traumatic encephalopathy and other neurodegenerative effects of repetitive head impacts (RHI). TES symptoms can mirror Alzheimer's disease (AD) despite absence of hallmark AD pathology. We investigated whether GFAP, NfL, and IL-6 correlated with cognition and brain volume changes within TES relative to AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Affiliated Drum Tower Hospital of Medical School, Nanjing University, NANJING, Jiangsu, China.
Background: Hyperlipoprotein cholesterolemia increases the risk of Alzheimer's disease(AD). LDL is mainly responsible for the risk. However, lipoprotein have different densities, different particle sizes, and different compositions.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
"Dual Perspectives" integrates multiple MRI scans, creating a nuanced synthesis of grey matter and diffusion-based regional connections. This rendering holds particular significance in the realm of Alzheimer's and dementia research by offering a comprehensive examination of data crucial for understanding these complex neurodegenerative conditions. The inclusion of grey matter provides a detailed insight into the structural composition of the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!