Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we present two-timescale neurodynamic optimization approaches to distributed minimax optimization. We propose four multilayer recurrent neural networks for solving four different types of generally nonlinear convex-concave minimax problems subject to linear equality and nonlinear inequality constraints. We derive sufficient conditions to guarantee the stability and optimality of the neural networks. We demonstrate the viability and efficiency of the proposed neural networks in two specific paradigms for Nash-equilibrium seeking in a zero-sum game and distributed constrained nonlinear optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2023.06.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!