Activation of thioglycosides under mild alkylation conditions.

Carbohydr Res

Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA. Electronic address:

Published: September 2023

Reported herein is the development of a novel method for the activation of thioglycosides and thioimidates using benzyl trichloroacetimidate in the presence of catalytic triflic acid. Excellent yields have been achieved with reactive substrates, whereas efficiency of reactions with unreactive glycosyl donors and/or acceptors was modest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528260PMC
http://dx.doi.org/10.1016/j.carres.2023.108872DOI Listing

Publication Analysis

Top Keywords

activation thioglycosides
8
thioglycosides mild
4
mild alkylation
4
alkylation conditions
4
conditions reported
4
reported development
4
development novel
4
novel method
4
method activation
4
thioglycosides thioimidates
4

Similar Publications

Automated glycan assembly (AGA) streamlines the synthesis of complex oligosaccharides. The reducing end of the oligosaccharide serves as an attachment site to the polymer support to liberate a free reducing end or an aminopentanol for ready conjugation to carrier proteins or surfaces. The facile installation of different aglycons on oligosaccharides has not been possible via AGA until now.

View Article and Find Full Text PDF

Photocaged compounds are chemical conjugates that are designed to release an active molecule upon exposure to light of a specific wavelength. In recent years, photocaged inducer molecules such as caged isopropyl β-D-1-thiogalactopyranoside (cIPTG) have been increasingly used as a powerful tool for light-driven gene expression in bacteria, allowing researchers to precisely and noninvasively tune the expression of specific target genes. In this chapter, we present a guideline for the synthesis of 6-nitropiperonyl photocaged IPTG (NP-cIPTG) as well as its in vivo application as an optochemical on-switch of gene transcription in Escherichia coli and other bacteria.

View Article and Find Full Text PDF

-(-Methoxyphenylpropargyl) Pyrrole-2-carboxylate (PPPC) Glycosides as Donors for Glycosylation.

Org Lett

December 2024

Shanghai Frontiers Science Centre of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

We developed glycosyl -(-methoxyphenylpropargyl) pyrrole-2-carboxylates (PPPCs) as highly effective donors for chemical glycosylation. The modular design and exceptional stability of the acid precursor provide PPPC donors with synthetic versatility and ease of use. Activated by NIS/TMSOTf, PPPC donors exhibit a broad compatibility for both - and -glycosylation reactions.

View Article and Find Full Text PDF

Effect of Protecting Groups and Activating Conditions on 3-Deoxy-d--d--2-nonulosonic Acid (Kdn) Glycosylation: Stereoselective Synthesis of α- and β-Kdn Glycosides.

Org Lett

December 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Kdn is a common member of the sialic acid family. Carbohydrates containing Kdn residues are widely distributed in nature and embody important biological information. However, the methods for synthesizing Kdn glycosides are limited, which restricts their biological study.

View Article and Find Full Text PDF

Broccoli is rich in biologically active compounds, especially polyphenols and glucosinolates, known for their health benefits. Traditional extraction methods have limitations, leading to a shift towards using natural deep eutectic solvents (NADESs) to create high-quality extracts with enhanced biological activity. This study focuses on preparing broccoli extracts in NADES, enriched with polyphenols and glucosinolates, without additional purification steps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!