Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118383 | DOI Listing |
ACS Environ Au
November 2024
Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States.
Environ Res
January 2025
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China.
J Environ Manage
December 2024
State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:
This study explored the odor composition and emission in chicken manure composting process, employing chemical fixatives and biochar to mitigate odors effectively. Compost maturity, ammonia, sulfur-containing odor emissions, as well as the bacterial and fungal community structure were analyzed to assess composting performance and mechanisms. The results indicated that four malodorous substances were identified as major contributors: dimethyl disulfide (MeS), hydrogen sulfide (HS), methyl sulfide (MeS), and ammonia (NH).
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen City, Fujian, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
In recent, the complexation of extracellular antibiotic resistance genes (eARGs) with environmental particles has been getting significant concerns, since eARGs can consequently disseminate, propagate and pose ecological risks to the environment. This study focused on eARGs complexing with struvite (MgNHPO·6HO) particles in struvite recovery by using synthetic wastewater. The adsorption capacities of eARGs by struvite crystals with different morphologies were firstly examined.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
Microbial fuel cell (MFC) and subsequent struvite crystallization are available low-carbon environmental- friendly techniques for resource utilization of waste activated sludge (WAS). In this study, low temperature thermo-alkaline pretreatment (LTTAP) was innovatively proposed for enhancing MFC electricity generation and subsequent struvite crystallization from WAS. The results indicated that LTTAP at 75 °C and pH 10 not only substantially shortened the start-up time of MFC to 3-4 days, but also significantly increased maximum power density to 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!