Breast cancer is characterized as being a heterogeneous pathology with a broad phenotype variability. Breast cancer subtypes have been developed in order to capture some of this heterogeneity. Each of these breast cancer subtypes, in turns retains varied characteristic features impacting diagnostic, prognostic and therapeutics. Basal breast tumors, in particular have been challenging in these regards. Basal breast cancer is often more aggressive, of rapid evolution and no tailor-made targeted therapies are available yet to treat it. Arguably, epigenetic variability is behind some of these intricacies. It is possible to further classify basal breast tumor in groups based on their non-coding transcriptome and methylome profiles. It is expected that these groups will have differences in survival as well as in sensitivity to certain classes of drugs. With this in mind, we implemented a computational learning approach to infer different subpopulations of basal breast cancer (from TCGA multi-omic data) based on their epigenetic signatures. Such epigenomic signatures were associated with different survival profiles; we then identified their associated gene co-expression network structure, extracted a signature based on modules within these networks, and use these signatures to find and prioritize drugs (in the LINCS dataset) that may be used to target these types of cancer. In this way we are introducing the analytical workflow for an epigenomic signature-based drug repurposing structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2023.107902 | DOI Listing |
Breast Cancer
January 2025
Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapy that combines the specificity and long circulation half-life of monoclonal antibodies with the cytotoxic potency of the payload connected through a chemical linker. The optimal management of toxicities is crucial for improving quality of life in patients undergoing ADCs and for avoiding improper dose reductions or discontinuations. This article focuses on the characteristics and management of nausea and vomiting (NV) induced by three ADCs: trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG), and datopotamab deruxtecan (Dato-DXd).
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA.
Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan.
Mol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!