A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial scale analysis for the relationships between the built environment and cardiovascular disease based on multi-source data. | LitMetric

Spatial scale analysis for the relationships between the built environment and cardiovascular disease based on multi-source data.

Health Place

School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, PR China; Key Laboratory of Geographic Information System of Ministry of Education, Wuhan University, Wuhan, 430079, PR China; Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan, 430079, PR China. Electronic address:

Published: September 2023

To examine what built environment characteristics improve the health outcomes of human beings is always a hot issue. While a growing literature has analyzed the link between the built environment and health, few studies have investigated this relationship across different spatial scales. In this study, eighteen variables were selected from multi-source data and reduced to eight built environment attributes using principal component analysis. These attributes included socioeconomic deprivation, urban density, street walkability, land-use diversity, blue-green space, transportation convenience, ageing, and street insecurity. Multiscale geographically weighted regression was then employed to clarify how these attributes relate to cardiovascular disease at different scales. The results indicated that: (1) multiscale geographically weighted regression showed a better fit of the association between the built environment and cardiovascular diseases than other models (e.g., ordinary least squares and geographically weighted regression), and is thus an effective approach for multiscale analysis of the built environment and health associations; (2) built environment variables related to cardiovascular diseases can be divided into global variables with large scales (e.g., socioeconomic deprivation, street walkability, land-use diversity, blue-green space, transportation convenience, and ageing) and local variables with small scales (e.g., urban density and street insecurity); and (3) at specific spatial scales, global variables had trivial spatial variation across the area, while local variables showed significant gradients. These findings provide greater insight into the association between the built environment and lifestyle-related diseases in densely populated cities, emphasizing the significance of hierarchical and place-specific policy formation in health interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.healthplace.2023.103048DOI Listing

Publication Analysis

Top Keywords

built environment
32
geographically weighted
12
weighted regression
12
built
8
environment
8
environment cardiovascular
8
cardiovascular disease
8
multi-source data
8
environment health
8
spatial scales
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!