A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual-bioactive molecules loaded aligned core-shell microfibers for tendon tissue engineering. | LitMetric

Dual-bioactive molecules loaded aligned core-shell microfibers for tendon tissue engineering.

Colloids Surf B Biointerfaces

School of Life Sciences, Nantong University, Nantong 226019, PR China. Electronic address:

Published: August 2023

Development of a controlled delivery ultrafine fibrous system with two bioactive molecules is required to stimulate tendon healing in different phase. In this study, we used emulsion stable jet electrospinning to fabricate aligned poly(L-lactic acid) (PLLA) based ultrafine fibers with two small bioactive molecules of L-Arginine (Arg) and low molecular weight hyaluronic acid (HA). The results demonstrated that the aligned Arg/HA/PLLA microfibrous scaffold showed core-shell structure and allowed sequential release of Arg and HA due to their different electric charge. The scaffold also showed enhanced hydrophilicity, cell migration, spread and proliferation. Using an Achilles tendon repair model in rats, we demonstrated that this novel fibrous scaffold can prevent adhesion and promote tendon regeneration. Additionally, two p53 and ER-α-mediated signalling pathways were described as the probable main path of synergistic effects of the novel scaffold on tendon generation. Thus, this study may provide an important strategy for developing biofunctional and biomimetic tendon scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2023.113416DOI Listing

Publication Analysis

Top Keywords

bioactive molecules
8
tendon
6
dual-bioactive molecules
4
molecules loaded
4
loaded aligned
4
aligned core-shell
4
core-shell microfibers
4
microfibers tendon
4
tendon tissue
4
tissue engineering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!