Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biochem Biophys Res Commun
Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. Electronic address:
Published: September 2023
Photosynthetic microorganisms such as cyanobacteria can convert photons into electrons, providing ideal eco-friendly materials for converting solar energy into electricity. However, the electrons are hardly transported outside the cyanobacterial cells due to the insulation feature of the cell wall/membrane. Various nanomaterials have been reported to enhance extracellular electron transfer of heterotrophic electroactive microorganisms, but its effect on intact photosynthetic microorganisms remains unclear. In this study, we investigated the effect of six different nanomaterials on the photocurrent generation of cyanobacterium Synechocystis sp. PCC 6803. Among the nanomaterials tested, titanium dioxide (TiO) nanoparticles increased the photocurrent generation of Synechocystis sp. PCC 6803 up to four-fold at the optimum concentration of 2 mg/mL. Transmission electron microscopy and scanning electron microscopy showed that TiO bound to cyanobacterial cells and likely penetrated inside of cell membrane. Photochemical analyses for photosystems showed that TiO blocked the electrons transfer downstream in PS I, implying a possible extracellular electron pathway mediated by TiO. This study provides an alternative approach for enhancing the photocurrent generation of cyanobacteria, showing the potential of photosynthetic-nanomaterial hybrids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2023.06.051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.