Metal-organic-frameworks (MOFs) have emerged as promising candidates in different scientific disciplines owing to their intriguing characteristics. Their unique structural properties, including large surface area to volume ratio with multi-functionalities and ultra-high porosity, tunability, uniformity, and easy derivation and fabrication, render them effective materials for sensing applications. The detection of heavy metals in different environmental matrices using various MOF-based sensors is in practice. They include luminescent, electrochemical, electrochemiluminescent, colorimetric, and surface-enhanced Raman scattering, are of great interest. This review elaborates on selected synthetic methods for the fabrication of MOF-based sensors, modification routes for tailoring and enhancing the desired properties, basic characterization techniques, and their limitations in the detection of heavy metals. Also, it emphasizes the use of various types of MOF-based sensors alternatively for the detection of different heavy metals such as Fe(III), Cr(III), Hg(II), Cd(II), and Pb(II) in addition to a normal metal Al(III). A collection of recent references is provided for researchers interested in such applications. Results from the literature have been summarized in tables which give an easy comparison and will help to develop efficient materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408347.2023.2220800 | DOI Listing |
Sci Rep
January 2025
Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.
Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.
View Article and Find Full Text PDFSci Rep
January 2025
Ministry of Higher Education, Mataria Technical College, Cairo, 11718, Egypt.
The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China. Electronic address:
The concentration of S is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S using various characterization techniques.
View Article and Find Full Text PDFLife (Basel)
January 2025
Biology Department, College of Science, King Khalid University [KKU], Abha 61413, Saudi Arabia.
This study investigates the anatomical adaptations of leaves from two halophyte species, (Forsskal) Asch. and L., in response to pollutants from a cement factory and human activities.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
belongs to the unconventional myosin superfamily, and the myosin IIIa protein localizes on the tip of the stereocilia of vestibular and cochlear hair cells. Deficiencies in have been reported to cause the deformation of hair cells into abnormally long stereocilia with an increase in spacing. is a rare causative gene of autosomal recessive sensorineural hearing loss (DFNB30), with only 13 cases reported to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!