Materials exhibiting unique electronic properties arising from a characteristic crystal structure have physical properties that are sensitive to structural dimensionality. This study involves the destabilization of Sn 5s lone-pair states of SnO films by decreasing their structural dimensionality in the out-of-plane direction. The inherent dispersive band structure of the SnO films remained unchanged between 80 and 11 nm. Below 11 nm, their dispersive band structure disappeared, the O/Sn ratio increased, and the carrier type changed from the p type to the n type, whereas the Sn valency remained constant at +2. These unconventional changes arose from the electronic separation corresponding to the Debye length, which is proportional to permittivity, and were attributed to weakened interactions between Sn 5s lone-pair electrons. Therefore, designing low-permittivity materials is beneficial for reducing the crystallite size required for stabilizing lone-pair states. These results are essential for designing emergent p-type oxides and improving their semiconducting properties and performance in transparent or high-power electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c00821 | DOI Listing |
Chem Sci
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
Traditional tetrahedral-based mid-to-far infrared (MFIR) nonlinear optical (NLO) crystals often face limitations due to the optical anisotropy constraints imposed by their highly symmetric structures. In contrast, the relatively rare trigonal pyramidal [TeS] functional unit characterized by its asymmetric structure and stereochemically active lone pair (SCALP), offers improved optical anisotropy, hyperpolarizability and a broader IR transparency range. Despite its potential, synthetic challenges have hindered the development of MFIR NLO crystals that incorporate this unit, with only one example reported to date.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Crystal Materials, Shandong University, 27th South Shanda Road, Jinan, 250100, China.
The demand for medical imaging with reduced patient dosage and higher resolution is growing, driving the need for advanced X-ray detection technologies. This paper proposes a design paradigm for X-ray detection semiconductors by coupling constituent motifs through crystal structure engineering. The study introduces a strongly anisotropic Aurivillius-type quasi-2D perovskite structure, combining [BiO] groups with stereochemically active lone pair electrons (SCALPEs) and [W/MoO] anionic groups, enabling enhanced X-ray Compton scattering and self-powered capabilities through local electric field ordering.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.
ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.
View Article and Find Full Text PDFChemistry
January 2025
University of Oxford, Inorganic Chemistry Laboratory, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Combining experiment and theory, the mechanisms of H2 activation by the potassium-bridged aluminyl dimer K2[Al(NON)]2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tertbutyl-9,9-dimethylxanthene) and its monomeric K+-sequestered counterpart have been investigated. These systems show diverging reactivity towards the activation of dihydrogen, with the dimeric species undergoing formal oxidative addition of H2 at each Al centre under ambient conditions, and the monomer proving to be inert to dihydrogen addition. Noting that this K+ dependence is inconsistent with classical models of single-centre reactivity for carbene-like Al(I) species, we rationalize these observations instead by a cooperative frustrated Lewis pair (FLP)-type mechanism (for the dimer) in which the aluminium centre acts as the Lewis base and the K+ centres as Lewis acids.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Circularly Polarized Light (CPL)-dependent anomalous photovoltaic effect (APVE), characterized by light helicity-manipulated steady photocurrent and above-bandgap photovoltage, has demonstrated significant potential in the fields of photoelectronic and photovoltaics. However, exploiting CPL-dependent APVE in chiral hybrid perovskites, a promising family with intrinsic chiroptical activity and non-centrosymmetric structure, remains challenging. Here, leveraging the flexible structural design of chiral alternating cations intercalation-type perovskites, CPL-dependent APV, for the first time, is achieved in chiral perovskites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!