Data-driven adaptive GM(1,1) time series prediction model for thermal comfort.

Int J Biometeorol

School of International Studies, Communication University of China (CUC), Beijing, 100024, China.

Published: August 2023

In this paper, the future prediction of predicted mean vote (PMV) index of indoor environment is studied. PMV is the evaluation index used in this paper to represent the thermal comfort of human body. According to the literature, the main environmental factors affecting PMV index are temperature, humidity, black globe temperature, wind speed, average radiation temperature, and clothing surface temperature, and there is a complex nonlinear relationship between the six variables. Due to the coupling relationship between the six parameters, the PMV formula can be simplified under specific conditions, reducing the monitoring of variables that are difficult to observe. Then, the improved grey system prediction model GM(1,1) with optimized selection dimension is used to predict the future time of PMV. Due to the irregularity, uncertainty and fluctuation of PMV values in time series, based on the original GM(1,1) time series prediction, an adaptive GM(1,1) improved model is proposed, which can continuously change with time series and enhance its prediction accuracy. By contrast, the improved GM(1,1) model can be derived from the sliding window of the adaptive model through changes in the dataset and get better model grades. It lays a foundation for the future research on the predicted index of PMV, so as to set and control the air conditioning system in advance, to meet the intelligence of modern intelligent home and humanized function of sensing human comfort.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00484-023-02500-9DOI Listing

Publication Analysis

Top Keywords

time series
16
adaptive gm11
8
gm11 time
8
series prediction
8
prediction model
8
thermal comfort
8
pmv
7
model
6
gm11
5
time
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!