Recent experimental advances led to the development of DNA base editors (BEs) with single-nucleotide precision, which is critical for future progress in various scientific and technological fields. The molecular mechanisms of single-base discrimination, however, remain poorly understood. Using a recently developed stochastic approach, we theoretically investigated the dynamics of single-base editing. More specifically, transient and mean times to edit "TC" motifs by cytosine BEs are explicitly evaluated for correct (target) and incorrect (bystander) locations on DNA. In addition, the effect of mutations on the dynamics of the single-base edition is also analyzed. It is found that for most ranges of parameters, it is possible to temporarily separate target and bystander products of base editing, supporting the idea of dynamic selectivity as a method of improving the precision of single-base editing. We conclude that to improve the efficiency of single-base editing, selecting the probability or selecting the time requires different strategies. Physical-chemical arguments to explain the observed dynamic properties are presented. The theoretical analysis clarifies some important aspects of the molecular mechanisms of selective base editing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908558 | PMC |
http://dx.doi.org/10.1063/5.0157193 | DOI Listing |
Sci Adv
December 2024
Rosie Lew Program in Immunotherapy and Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.
Single-nucleotide variants (SNVs) are extremely prevalent in human cancers, although most of these remain clinically unactionable. The programmable RNA nuclease CRISPR-Cas13 has been deployed to specifically target oncogenic RNAs. However, silencing oncogenic SNVs with single-base precision remains extremely challenging due to the intrinsic mismatch tolerance of Cas13.
View Article and Find Full Text PDFaBIOTECH
December 2024
State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400 China.
Unlabelled: CRISPR/Cas-based genome editing has been extensively employed in the breeding and genetic improvement of trees, yet precise editing remains challenging in these species. Prime editing (PE), a revolutionary technology for precise editing, allows for arbitrary base substitutions and the insertion/deletion of small fragments. In this study, we focused on the model tree poplar 84K ( × ).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha, 410082, China.
The ability to control gene expression is vital for elucidating gene functions and developing next-generation therapeutics. Current techniques are challenged by the lack of cell-specific control designs or immunogenicity risk from foreign proteins. We develop a DNA repair inducible ribozyme switch that enables cell-specific control of gene expression in cells and in vivo.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
Seattle Children's Research Institute, Seattle, WA 98101, USA.
Gene editing provides a promising alternative approach that may achieve long-term FVIII expression for hemophilia A (HemA) treatment. In this study, we investigated correction of a mutant factor VIII (FVIII) gene in HemA mice. We first developed MC3-based LNPs for efficient mRNA delivery into liver sinusoidal endothelial cells (LSECs), the major site of FVIII biosynthesis.
View Article and Find Full Text PDFGlob Med Genet
December 2024
Institute of Green Manufacturing Technology, Korea University, Seoul, Republic of Korea.
In the fields of medicine and bioscience, gene editing is increasingly recognized as a promising therapeutic approach for treating pathogenic variants in humans and other living organisms. With advancements in technology and knowledge, it is now understood that most genetic defects are caused by single-base pair variants. The ability to substitute genes using genome editing tools enables scientists and doctors to cure genetic diseases and disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!