A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using self-supervised feature learning to improve the use of pulse oximeter signals to predict paediatric hospitalization. | LitMetric

Using self-supervised feature learning to improve the use of pulse oximeter signals to predict paediatric hospitalization.

Wellcome Open Res

Julius Center for Health Sciences and Primary Care, Department of Data Science and Biostatistics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Published: February 2023

: The success of many machine learning applications depends on knowledge about the relationship between the input data and the task of interest (output), hindering the application of machine learning to novel tasks. End-to-end deep learning, which does not require intermediate feature engineering, has been recommended to overcome this challenge but end-to-end deep learning models require large labelled training data sets often unavailable in many medical applications. In this study, we trained self-supervised learning (SSL) models for automatic feature extraction from raw photoplethysmography (PPG) obtained using a pulse oximeter, with the aim of predicting paediatric hospitalization.  : We compared logistic regression models fitted using features extracted using SSL with models trained using both clinical and SSL features. In addition, we compared end-to-end deep learning models initialized randomly or using weights from the SSL models. We also compared the performance of SSL models trained on labelled data alone (n=1,031) with SSL trained using both labelled and unlabelled signals (n=7,578). : Logistic regression models were more predictive of hospitalization when trained on features extracted using labelled PPG signals only compared to SSL models trained on both labelled and unlabelled signals (AUC 0.83 vs 0.80). However, features extracted using SSL model trained on both labelled and unlabelled PPG signals were more predictive of hospitalization when concatenated with clinical features (AUC 0.89 vs 0.87). The end-to-end deep learning model had an AUC of 0.80 when initialized using the SSL model trained on all PPG signals, 0.77 when initialized using SSL trained on labelled data only, and 0.73 when initialized randomly. : This study shows that SSL can extract features from PPG signals that are predictive of hospitalization or initialize end-to-end deep learning models. Furthermore, SSL can leverage larger unlabelled data sets to improve performance of models fitted using small labelled data sets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280037PMC
http://dx.doi.org/10.12688/wellcomeopenres.17148.2DOI Listing

Publication Analysis

Top Keywords

end-to-end deep
20
deep learning
20
ssl models
20
trained labelled
20
ppg signals
16
learning models
12
data sets
12
ssl
12
features extracted
12
models trained
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!