At present, China is moving towards the direction of "Industry 4.0". The development of the automobile industry, especially intelligent automobiles, is in full swing, which brings great convenience to people's life and travel. However, at the same time, urban traffic pressure is also increasingly prominent, and the situation of traffic congestion and traffic safety is not optimistic. In this context, the Internet of Vehicles (also known as "IoV") opens up a new way to relieve urban traffic pressure. Therefore, in order to further optimize the road network traffic conditions in the IoV environment, this research focuses on the traffic flow prediction algorithm on the basis of deep learning to enhance traffic efficiency and safety. First, the study investigates the short-time traffic flow prediction by combining the characteristics of the IoV environment. To address the issues that existing algorithms cannot automatically extract data features and the model expression capability is weak, the study chooses to build a deep neural network using GRU model in deep learning for short-time traffic flow prediction, thereby improving the prediction accuracy of algorithm. Secondly, a fine-grained traffic flow statistics approach suitable for the IoV situation is suggested in accordance with the deep learning model that was built. The algorithm sends the vehicle characteristic data obtained through GRU model training into the fine-grained traffic flow statistics algorithm, so as to realize the statistics of traffic information of various types of vehicles. The advantage of this algorithm is that it can well count the traffic flow of multiple lanes, so as to better predict the current traffic status and achieve traffic optimization. Finally, the IoV environment is constructed to confirm the effectiveness of the prediction model. The prediction results prove that the new algorithm has good performance in traffic flow statistics in different scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280423PMC
http://dx.doi.org/10.7717/peerj-cs.1411DOI Listing

Publication Analysis

Top Keywords

traffic flow
28
traffic
16
iov environment
12
flow prediction
12
deep learning
12
flow statistics
12
traffic optimization
8
deep neural
8
neural network
8
urban traffic
8

Similar Publications

Can we realize seamless traffic safety at smart intersections by predicting and preventing impending crashes?

Accid Anal Prev

December 2024

UCF Smart & Safe Transportation Lab, Department of Civil, Environmental and Construction Engineering, University of Central Florida, 12800 Pegasus Drive, Orlando, FL 32816, United States. Electronic address:

Intersections are frequently identified as crash hotspots for roadways in major cities, leading to significant human casualties. We propose crash likelihood prediction as an effective strategy to proactively prevent intersection crashes. So far, no reliable models have been developed for intersections that effectively account for the variation in crash types and the cyclical nature of Signal Phasing and Timing (SPaT) and traffic flow.

View Article and Find Full Text PDF

Deep Learning-Based Method for Detecting Traffic Flow Parameters Under Snowfall.

J Imaging

November 2024

Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China.

In recent years, advancements in computer vision have yielded new prospects for intelligent transportation applications, specifically in the realm of automated traffic flow data collection. Within this emerging trend, the ability to swiftly and accurately detect vehicles and extract traffic flow parameters from videos captured during snowfall conditions has become imperative for numerous future applications. This paper proposes a new analytical framework designed to extract traffic flow parameters from traffic flow videos recorded under snowfall conditions.

View Article and Find Full Text PDF

The COVID-19 lockdown created a unique opportunity to study the impact of reduced human activities on water quality. This study aimed to explore how changes in human activities, specifically reduced traffic emissions, influenced water quality in the San Francisco Bay Area from 2019 to 2021. Using chlorophyll-a (Chl-a) concentration as an indicator of water quality and NO₂ concentration as a proxy for traffic emissions, we analyzed the effects of reduced emissions on water quality across different regions of the Bay.

View Article and Find Full Text PDF

The field of traffic forecasting has been the subject of considerable attention as a critical component in alleviating traffic congestion and improving urban services. Given the regular patterns of human activities, it is evident that traffic flow is inherently periodic. However, most of existing studies restrict themselves to recent historical observations and typically yield structurally and computationally complex models, which greatly limits the forecasting accuracy and hinders the application of models in realistic situations.

View Article and Find Full Text PDF

This study critically examines the reliability and resilience of the Muscat coastal highway network (CHN) under the compounded effects of earthquakes and floods, representing interacting multi-hazard scenarios. The analysis utilized fragility functions for both earthquake-induced and flood-induced landslides, integrating these with traffic data for selected highway links to estimate bridge damage and assess CHN functionality in post-hazard conditions. Economic sensitivity analysis revealed a significant increase in costs due to flood-induced landslides, emphasizing the impact of dominant intensity measures on network costs and traffic flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!