A novel residual block: replace Conv1× 1 with Conv3×3 and stack more convolutions.

PeerJ Comput Sci

Department of Electronic and Information Engineering, Bozhou University, Bozhou, Anhui, China.

Published: March 2023

The residual structure has an important influence on the design of the neural network model. The neural network model based on residual structure has excellent performance in computer vision tasks. However, the performance of classical residual networks is restricted by the size of receptive fields, channel information, spatial information and other factors. In this article, a novel residual structure is proposed. We modify the identity mapping and down-sampling block to get greater effective receptive field, and its excellent performance in channel information fusion and spatial feature extraction is verified by ablation studies. In order to further verify its feature extraction capability, a non-deep convolutional neural network (CNN) was designed and tested on Cifar10 and Cifar100 benchmark platforms using a naive training method. Our network model achieves better performance than other mainstream networks under the same training parameters, the accuracy we achieved is 3.08 percentage point higher than ResNet50 and 1.38 percentage points higher than ResNeXt50. Compared with SeResNet152, it is 0.29 percentage point higher in the case of 50 epochs less training.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280407PMC
http://dx.doi.org/10.7717/peerj-cs.1302DOI Listing

Publication Analysis

Top Keywords

residual structure
12
neural network
12
network model
12
novel residual
8
excellent performance
8
feature extraction
8
percentage point
8
point higher
8
residual block
4
block replace
4

Similar Publications

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Multi-modal medical images are important in tumor lesion detection. However, the existing detection models only use single-modal to detect lesions, a multi-modal semantic correlation is not enough to consider and lacks ability to express the shape, size, and contrast degree features of lesions. A Cross Modal YOLOv5 model (CMYOLOv5) is proposed.

View Article and Find Full Text PDF

Residual dentin thickness and biomechanical performance of post-and-core-restored mandibular premolars: A finite element analysis study.

J Prosthet Dent

December 2024

Associate Chief Physician, Department of Prosthodontic, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China. Electronic address:

Statement Of Problem: Endodontically treated teeth often require post-and-core restorations for structural support because of extensive hard tissue loss. Assessment of the effect of the residual dentin thickness on the biomechanical performance of these restorations is lacking.

Purpose: The purpose of this study was to evaluate the residual dentin thickness in mandibular premolars after post-and-core restorations using cone beam computed tomography (CBCT) and to analyze the stress distribution with finite element analysis (FEA).

View Article and Find Full Text PDF

Effect of Bias Voltage on the Microstructure and Photoelectric Properties of W-Doped ZnO Films.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China.

W-doped ZnO (WZO) films were deposited on glass substrates by using RF magnetron sputtering at different substrate bias voltages, and the relationships between microstructure and optical and electrical properties were investigated. The results revealed that the deposition rate of WZO films first decreased from 8.8 to 7.

View Article and Find Full Text PDF

The Protection of RC Columns by Bio-Inspired Honeycomb Column Thin-Walled Structure (BHTS) Under Impact Load.

Biomimetics (Basel)

December 2024

Heilongjiang Construction Investment Group Co., Ltd., Harbin 150046, China.

The bio-inspired honeycomb column thin-walled structure (BHTS) is inspired by the biological structure of beetle elytra and designed as a lightweight buffer interlayer to prevent damage to the reinforced concrete bridge pier (RCBP) under the overload impact from vehicle impact. According to the prototype structure of the pier, a batch of scale models with a scaling factor of 1:10 was produced. The BHTS buffer interlayer was installed on the reinforced concrete (RC) column specimen to carry out the steel ball impact test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!