Copper (Cu) nanoparticles are considered a promising alternative to silver (Ag) and gold (Au) for printed electronics applications. Because Cu has higher electrical conductivity, it is significantly cheaper than Ag and Au. To study the applicability of electronic printing, we prepared Ag@Cu conductive ink by using a stepwise feeding method to disperse nano Ag and nano Cu in ethanol and water. The ink has the advantages of nontoxic, low content, and low cost. A three-dimensional (3D) model was designed, and a conductive pattern was printed on the photo paper substrate using extrusion 3D printing technology. The influence of waterborne resin on the adhesion of conductive patterns is discussed. The printed conductive pattern can maintain the stability of conductivity after 100 bending cycles. The conductive pattern has good thermal stability. It can be tested 10 times under 2 conditions of 85°C and room temperature to maintain good conductivity. This shows that Ag@Cu conductive ink printed flexible electronic products are competitive.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280186 | PMC |
http://dx.doi.org/10.1089/3dp.2021.0199 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
Rapid evolution of smart devices necessitates high-performance, lightweight materials for effective electromagnetic interference (EMI) shielding. TiCT MXene nanosheets are promising for such applications, yet the high solid content typically required for 3D-printable MXene inks limits their scalability and cost efficiency. In this study, we present an MXene-based ink with an ultralow solid content (0.
View Article and Find Full Text PDFParkinsonism Relat Disord
December 2024
Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
Co-morbid Alzheimer's disease (AD) pathology (amyloid-beta and tau) is commonly observed in Lewy body dementia (LBD), and this may affect clinical outcomes. A systematic review of the effect of AD co-pathology on longitudinal clinical outcomes in LBD was conducted. A search of MEDLINE and EMBASE (October 2024) yielded n = 3558 records that were screened by two independent reviewers.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran.
Robocasting calcium phosphate compounds as a novel approach to creating customized structures with interconnected pores not only overcomes the limitations of traditional fabrication methods of calcium phosphate substitutes but also boosts the potential for bone tissue regeneration. The ink development is a key step in 3D printing. In this study, different inks consisting of magnesium- and sodium-doped carbonated hydroxyapatite, β-tricalcium phosphate, and Pluronic F-127 were prepared to design biomimetic bone scaffolds.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
In recent years, inkjet digital printing technology has become a popular research area. This paper focuses on the spreading behavior of single ink drops on coated paper in digital inkjet printing. It explores the impact of ink drop spreading on monochromatic spectral reflectance, providing new insights for the theoretical development of spectral prediction models.
View Article and Find Full Text PDFGels
December 2024
Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!