Optoelectronic synaptic devices capable of processing multiwavelength inputs are critical for neuromorphic vision hardware, which remains an important challenge. Here, we develop a bidirectional synaptic phototransistor based on a two-dimensional ferroelectric semiconductor of α-InSe, which exhibits bidirectional potentiated and depressed synaptic weight update under optical pulse stimulation. Importantly, the bidirectional optoelectronic synaptic behavior can be extended to multiwavelengths (blue, green, and red light), which could be used for color recognition. The mechanism underlying the bidirectional synaptic characteristics is attributed to the gate-configurable barrier heights as revealed by the Kelvin probe force microscopy measurement. The α-InSe device exhibits versatile synaptic plasticity such as paired-pulse facilitation, short- and long-term potentiation, and long-term depression. The bidirectional optoelectronic synaptic weight updates under multiwavelength inputs enable a high accuracy of 97% for mixed color pattern recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c02167DOI Listing

Publication Analysis

Top Keywords

bidirectional synaptic
12
optoelectronic synaptic
12
synaptic phototransistor
8
phototransistor based
8
based two-dimensional
8
two-dimensional ferroelectric
8
ferroelectric semiconductor
8
mixed color
8
color pattern
8
pattern recognition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!