A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electroactive Materials Surface Charge Impacts Neuron Viability and Maturation in 2D Cultures. | LitMetric

Electroactive Materials Surface Charge Impacts Neuron Viability and Maturation in 2D Cultures.

ACS Appl Mater Interfaces

CF-UM-UP─Physics Centre of Minho and Porto Universities and LaPMET─Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga 4710-057, Portugal.

Published: July 2023

Since neurons were first cultured outside a living organism more than a century ago, a number of experimental techniques for their maintenance have been developed. These methods have been further adapted and refined to study specific neurobiological processes under controlled experimental conditions. Despite their limitations, the simplicity and visual accessibility of 2D cultures have enabled the study of the effects of trophic factors, adhesion molecules, and biophysical stimuli on neuron function and morphology. Nevertheless, the impact of fundamental properties of the surfaces to which neurons adhere when cultured has not been sufficiently considered. Here, we used an electroactive polymer with different electric poling states leading to different surface charges to evaluate the impact of the net electric surface charge on the behavior of primary neurons. Average negative and positive surface charges promote increased metabolic activity and enhance the maturation of primary neurons, demonstrating the relevance of considering the composition and electric charge of the culture surfaces. These findings further pave the way for the development of novel therapeutic strategies for the regeneration of neural tissues, particularly based on dynamic surface charge variation that can be induced in the electroactive films through mechanical solicitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326803PMC
http://dx.doi.org/10.1021/acsami.3c04055DOI Listing

Publication Analysis

Top Keywords

surface charge
12
surface charges
8
primary neurons
8
surface
5
electroactive materials
4
materials surface
4
charge
4
charge impacts
4
impacts neuron
4
neuron viability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!