Z-Ala-Ile-OH, a dipeptide building block suitable for the formation of orthorhombic microtubes.

Acta Crystallogr C Struct Chem

IESL/FORTH, N. Plastiras 100, 70013 Heraklion, Greece.

Published: July 2023

AI Article Synopsis

  • Self-assembling dipeptides, particularly diphenylalanine (Phe-Phe), have gained attention as innovative materials for biomaterials development, but aliphatic and mixed dipeptides also show significant potential with unique structures.
  • The study focuses on the aliphatic dipeptide alanine-isoleucine (Ala-Ile), which has a benzyloxycarbonyl (Z) group at the N-terminus, and reveals its single-crystal structure and crystallization behavior.
  • The research demonstrates that Ala-Ile forms hollow microtubes with orthorhombic symmetry on glass surfaces, enhancing the understanding of peptide self-assembly and broadening the options for microtechnological applications

Article Abstract

Self-assembling dipeptides have emerged in the last two decades as promising building blocks for the development of novel biomaterials. Among the various classes of dipeptides, aromatic dipeptides and especially diphenylalanine (Phe-Phe), which forms hexagonal nanotubes, have been the most extensively studied. However, aliphatic peptides or mixed aromatic-aliphatic dipeptides seem just as promising, exhibiting various structures ranging from amyloid fibrils to microtubes. Herein we report the single-crystal structure of an aliphatic dipeptide, alanine-isoleucine (Ala-Ile), CHNO, protected with a benzyloxycarbonyl (Z) group at the N-terminus. The protected dipeptide crystallizes in the orthorhombic space group P222 and forms hollow microtubes with orthorhombic symmetry upon evaporation on glass surfaces, as shown by field emission scanning electron microscopy (FESEM). These findings provide an increased understanding of the correlation between the single-crystal structure of the peptide building block and its self-assembly mechanism, and expand the library of available building blocks for microtechnological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320834PMC
http://dx.doi.org/10.1107/S2053229623004849DOI Listing

Publication Analysis

Top Keywords

building block
8
building blocks
8
single-crystal structure
8
z-ala-ile-oh dipeptide
4
building
4
dipeptide building
4
block suitable
4
suitable formation
4
formation orthorhombic
4
orthorhombic microtubes
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Boosting Multicolor Emission Enhancement in Two-Dimensional Covalent-Organic Frameworks via the Pressure-Tuned π-π Stacking Mode.

Nano Lett

January 2025

Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF).

View Article and Find Full Text PDF

The development of hole-collecting materials is indispensable to improving the performance of perovskite solar cells (PSCs). To date, several anchorable molecules have been reported as effective hole-collecting monolayer (HCM) materials for p-i-n PSCs. However, their structures are limited to well-known electron-donating skeletons, such as carbazole, triarylamine, etc.

View Article and Find Full Text PDF

Synthetic cells in tissue engineering.

Curr Opin Biotechnol

January 2025

INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, United Kingdom. Electronic address:

Tissue functions rely on complex structural, biochemical, and biomechanical cues that guide cellular behavior and organization. Synthetic cells, a promising new class of biomaterials, hold significant potential for mimicking these tissue properties using simplified, nonliving building blocks. Advanced synthetic cell models have already shown utility in biotechnology and immunology, including applications in cancer targeting and antigen presentation.

View Article and Find Full Text PDF

Carboxylic acids and aromatic compounds are essential building blocks and starting materials for the production of a wide range of fine chemicals and materials. Their recovery from kraft black liquor, an industrial effluent from pulp and paper mills, is a promising way to produce alternative bio-based chemicals. Reliable methods are needed to identify and quantify the molecules of interest in complex mixtures such as black liquors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!