Photosensitizing Metasurface Empowered by Enhanced Magnetic Field of Toroidal Dipole Resonance.

Small

Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Kobe, 657-8501, Japan.

Published: October 2023

Photochemical reaction exploiting an excited triplet state (T ) of a molecule requires two steps for the excitation, i.e., electronic transition from the ground (S ) to singlet excited (S ) states and intersystem crossing to the T  state. A dielectric metasurface coupled with photosensitizer that enables energy efficient photochemical reaction via the enhanced S →T magnetic dipole transition is developed. In the direct S →T transition, the photon energy of several hundreds of meV is saved compared to the conventional S → S →T transition. To maximize the magnetic field intensity on the surface, a silicon (Si) nanodisk array metasurface with toroidal dipole resonances is designed. The surface of the metasurface is functionalized with ruthenium (Ru(II)) complexes that work as a photosensitizer for singlet oxygen generation. In the coupled system, the rate of the direct S →T transition of Ru(II) complexes is 41-fold enhanced at the toroidal dipole resonance of a Si nanodisk array. The enhancement of a singlet oxygen generation rate is observed when the toroidal dipole resonance of a Si nanodisk array is matched with the direct S →T transition wavelength of Ru(II) complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202302519DOI Listing

Publication Analysis

Top Keywords

toroidal dipole
16
→t transition
16
dipole resonance
12
direct →t
12
nanodisk array
12
ruii complexes
12
magnetic field
8
photochemical reaction
8
singlet oxygen
8
oxygen generation
8

Similar Publications

Lithium niobate (LiNbO) has shown great potential for applications in nonlinear metasurfaces, thanks to its large second-order nonlinear coefficients and high integration capabilities. Optical resonances play a crucial role in further enhancing the nonlinear optical responses of LiNbO metasurfaces (LNMS). In this study, both numerically and experimentally, we designed and fabricated a metasurface structure that supports toroidal dipole (TD) resonance to enhance second-harmonic generation (SHG).

View Article and Find Full Text PDF

Dipole toroidal modes appear in many fields of physics. In nuclei, such a mode was predicted more than 50 years ago, but clear experimental evidence was lacking so far. Using a combination of high-resolution inelastic scattering experiments with photons, electrons, and protons, we identify for the first time candidates for toroidal dipole excitations in the nucleus ^{58}Ni and demonstrate that transverse electron scattering form factors represent a relevant experimental observable to prove their nature.

View Article and Find Full Text PDF

The significance of bound states in the continuum (BICs) lies in their potential for theoretically infinite quality factors. However, their actual quality factors are limited by imperfections in fabrication, which lead to coupling with the radiation continuum. In this study, we present a novel approach to address this issue by introducing a merging BIC regime based on a Lieb lattice.

View Article and Find Full Text PDF

Symmetry-protected quasi-bound states in the continuum (qBICs) in metasurfaces with broken in-plane symmetry are extensively investigated to achieve high quality-factor (Q-factor) resonances. Herein, we propose the hetero-out-of-plane (H-OP) dielectric metasurface, which is composed of Si cuboids tetramer broken out-of-plane symmetry by adding a layer of silica. Dual polarization-independent qBICs are realized.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores toroidal dipole (TD) metasurfaces made from aluminum semicircles on a polyimide substrate, focusing on their behavior in the terahertz (THz) frequency range.
  • It was observed that as the outer radius of the semicircles increases, the resonance frequencies shift downwards due to increased inductance and capacitance.
  • The unique head-to-tail magnetic field distribution, resulting from the combination of TD resonances and current flow, enhances the Q-factor of the metasurfaces, making them promising for high sensitivity applications in the terahertz range.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!