Muscle fibre transition and transcriptional changes of horse skeletal muscles during traditional Mongolian endurance training.

Equine Vet J

Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.

Published: January 2024

Background: Traditional Mongolian endurance training is an effective way to improve the athletic ability of the horse for endurance events and is widely used. This incorporates aerobic exercise and intermittent fasting and these altered physiologic conditions are associated with switches between muscle fibre types.

Objectives: To better understand the adaption of horse skeletal muscle to traditional Mongolian endurance training from muscle fibre characteristics and transcriptional levels and to explore possible molecular mechanisms associated with the endurance performance of horses.

Study Design: Before-after study.

Methods: Muscle fibre type switches and muscle transcriptome changes in six Mongolian horses were assessed during 4 weeks of training. Transcriptomic and histochemical analyses were performed. The activities of oxidative and glycolytic metabolic enzymes were analysed and we generated deep RNA-sequencing data relating to skeletal muscles.

Results: A fast-to-slow muscle fibre transition occurred in horse skeletal muscles, with a concomitant increase of oxidative enzyme activity and decreased glycolytic enzyme activity. Numerous differentially expressed genes were involved in the control of muscle protein balance and degradation. Differential alternative splicing events were also found during training which included exon-skipping events in Ttn that were associated with muscle atrophy. Differentially expressed noncoding RNAs showed connections with muscle protein balance-related pathways and fibre type specification via the post-transcriptional regulation of miRNA.

Main Limitations: The study focuses on horse athletic ability only from the aspect of muscular adaptation.

Conclusion: Traditional Mongolian endurance training-induced muscle fibre transition and metabolic and transcriptional changes. Muscle-specific non-coding RNAs could contribute to these transcriptomic changes during training.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evj.13968DOI Listing

Publication Analysis

Top Keywords

muscle fibre
24
traditional mongolian
16
mongolian endurance
16
fibre transition
12
horse skeletal
12
endurance training
12
muscle
11
transcriptional changes
8
skeletal muscles
8
athletic ability
8

Similar Publications

Background: Rupture of extensor pollicis longus tendon (EPL) is a known complication following a distal radius fracture (DRF). Although the precise mechanisms behind these ruptures remain unclear, vascular impairment is thought to play a significant role. Additionally, the impact of an EPL rupture on microstructure of the tendon and muscle is not well understood, but such information could be important in guiding treatment strategies.

View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

The negative effects of particulate matter up to 2.5 μm in diameter (PM) and their mediating mechanisms have been studied in various tissues. However, little is known about the mechanism and long-term tracking underlying the sex-dependent effects of PM on skeletal muscle system modulation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!