Organic chromophores initiate much of daytime aqueous phase chemistry in the environment. Thus, studying the absorption spectra of commonly used organic photosensitizers is paramount to fully understand their relevance in environmental processes. In this work, we combined UV-Vis spectroscopy, H-NMR spectroscopy, quantum chemical calculations, and molecular dynamics simulations to investigate the absorption spectra of 4-benzoyl benzoic acid (4BBA), a widely used photosensitizer and a common proxy of environmentally relevant chromophores. Solutions of 4BBA at different pH values show that protonated and deprotonated species have an effect on its absorbance spectra. Theoretical calculations of these species in water clusters provide physical and chemical insights into the spectra. Quantum chemical calculations were conducted to analyze the UV-Vis absorbance spectra of 4BBA species using various cluster sizes, such as CHCOCHCOOH·(HO), where = 8 for relatively small clusters and = 30 for larger clusters. While relatively small clusters have been successfully used for smaller chromophores, our results indicate that simulations of protonated species of 4BBA require relatively larger clusters of = 30. A comparison between the experimental and theoretical results shows good agreement in the pH-dependent spectral shift between the hydrated cluster model and the experimental data. Overall, the theoretical and empirical results indicate that the experimental optical spectra of aqueous phase 4BBA can be represented by the acid-base equilibrium of the keto-forms, with a spectroscopically measured p of 3.41 ± 0.04. The results summarized here contribute to a molecular-level understanding of solvated organic molecules through calculations restricted to cluster models, and thereby, broader insight into environmentally relevant chromophores.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp01520cDOI Listing

Publication Analysis

Top Keywords

aqueous phase
8
absorption spectra
8
quantum chemical
8
chemical calculations
8
environmentally relevant
8
relevant chromophores
8
absorbance spectra
8
small clusters
8
larger clusters
8
spectra
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!