This work presents the results of using tree-based models, including Gradient Boosting, Extra Trees, and Random Forest, to model the solubility of hyoscine drug and solvent density based on pressure and temperature as inputs. The models were trained on a dataset of hyoscine drug with known solubility and density values, optimized with WCA algorithm, and their accuracy was evaluated using R, MSE, MAPE, and Max Error metrics. The results showed that Gradient Boosting and Extra Trees models had high accuracy, with R values above 0.96 and low MAPE and Max Error values for both solubility and density output. The Random Forest model was less accurate than the other two models. These findings demonstrate the effectiveness of tree-based models for predicting the solubility and density of chemical compounds and have potential applications in determination of drug solubility prior to process design by correlation of solubility and density to input parameters including pressure and temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284815 | PMC |
http://dx.doi.org/10.1038/s41598-023-37232-8 | DOI Listing |
Talanta
December 2024
Department of Pathology, College of Medicine, King Khalid University, Asir, 61421, Saudi Arabia; Forensic Medicine and Clinical Toxicology Department, Mansoura University, Egypt. Electronic address:
Complexing medications with cyclodextrins can enhance their solubility and stability. In this study, we investigated the host-guest complexation between Tetrahydrocurcumin (THC) and Hydroxypropyl-β-Cyclodextrin (HP-β-CD) using density functional theory (DFT) at the B3LYP-D3/TPZ level of theory in two possible orientations. To determine the reactive sites in both complexes for electrophilic and nucleophilic attacks, we calculated and interpreted the binding energy, HOMO and LUMO orbitals, global chemical reactivity descriptors, natural bond orbital (NBO) analysis, and Fukui indices.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Mass General Institute for Neurodegenerative Disease, Charlestown, MA, USA.
Background: Some individuals can tolerate the presence of Alzheimer disease neuropathologic changes (ADNC) (e.g., plaques and tangles) without developing dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Buenos Aires, Buenos Aires, Argentina.
Background: Alzheimer's disease is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and in the walls of brain vessels. The hippocampus - a complex brain structure that plays a key role in learning and memory - has been implicated in the disease. However, there is limited data on vascular changes during the pathological degeneration of Alzheimer's disease in this vulnerable structure, which has distinctive vascular features.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: Recent evidence suggests that cerebrovascular dysfunction may precede and contribute to amyloid beta-(Aβ)-mediated pathology in Alzheimer's Disease (AD), particularly promoting endothelial cell damage and stress, causing the cerebral blood flow impairments, cerebral hypoperfusion, and blood brain barrier (BBB) permeability that are pathologically characteristic in AD. Studies have emerged suggesting a link between cardiovascular diseases and AD pathology, showing that cerebrovascular/cardiovascular risk factors (CVRFs), including hyperhomocysteinemia (Hhcy) and hypertension (HTN), and the cerebral consequences of these CVRFs, such as cerebral hypoperfusion, contribute to AD pathology and risk. Despite this, the underlying molecular mechanisms for these associations remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Background: Cellular senescence is defined as cell cycle arrest and the acquisition of a proinflammatory 'senescence-associated secretory phenotype' (SASP). In Alzheimer's disease (AD), tau protein in neurons undergoes hyperphosphorylation and misfolding, resulting in the formation of pathogenic soluble aggregates known as tau oligomers. Tau oligomers are released from neurons during neuronal activation and are transmitted to postsynaptic cells in a prion-like fashion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!