Aldo-keto reductase 1C3 (AKR1C3) plays a role in the detoxification and activation of clinical drugs by catalyzing reduction reactions. There are approximately 400 single-nucleotide polymorphisms (SNPs) in the gene, but their impact on the enzyme activity is still unclear. This study aimed to clarify the effects of SNPs of with more than 0.5% global minor allele frequency on the reductase activities for its typical substrates. Recombinant AKR1C3 wild-type and R66Q, E77G, C145Y, P180S, or R258C variants were constructed using insect Sf21 cells, and reductase activities for acetohexamide, doxorubicin, and loxoprofen by recombinant AKR1C3s were measured by liquid chromatography-tandem mass spectrometry. Among the variants tested, the C145Y variant showed remarkably low (6%-14% of wild type) intrinsic clearances of reductase activities for all three drugs. Reductase activities of these three drugs were measured using 34 individual Japanese liver cytosols, revealing that heterozygotes of the SNP g.55101G>A tended to show lower reductase activities for three drugs than homozygotes of the wild type. Furthermore, genotyping of the SNP g.55101G>A causing C145Y in 96 Caucasians, 166 African Americans, 192 Koreans, and 183 Japanese individuals was performed by polymerase chain reaction-restriction fragment length polymorphism. This allelic variant was specifically detected in Asians, with allele frequencies of 6.8% and 3.6% in Koreans and Japanese, respectively. To conclude, an allele with the SNP g.55101G>A causing C145Y would be one of the causal factors for interindividual variabilities in the efficacy and toxicity of drugs reduced by AKR1C3. SIGNIFICANCE STATEMENT: This is the first study to clarify that the allele with the SNP g.55101G>A causing C145Y results in a decrease in reductase activity. Since the allele was specifically observed in Asians, the allele would be a factor causing an interindividual variability in sensitivity of drug efficacy or toxicity of drugs reduced by AKR1C3 in Asians.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.123.001264 | DOI Listing |
Front Pharmacol
December 2024
Department of Biosciences, Integral University, Lucknow, India.
Introduction: Diabetic retinopathy is a significant microvascular disorder and the leading cause of vision impairment in working-age individuals. Hyperglycemia triggers retinal damage through mechanisms such as the polyol pathway and the accumulation of advanced glycation end products (AGEs). Inhibiting key enzymes in this pathway, aldose reductase (AR) and sorbitol dehydrogenase (SD), alongside preventing AGE formation, may offer therapeutic strategies for diabetic retinopathy and other vascular complications.
View Article and Find Full Text PDFFront Nutr
December 2024
College of Horticulture, Xinjiang Agricultural University, Urumqi, China.
The application of plant growth regulators is an effective method to enhance flavonoid content in certain fruits; however, there is limited research comparing the effects of different plant growth regulators. This study evaluated the impact of pre-harvest application with melatonin, 24-epibrassinolide, and methyl jasmonate on flavonoid content in blueberry fruit. All three plant growth regulators increased the total polyphenol content, total flavonoid content, antioxidant capacities, and the activities of key enzymes involved in flavonoid biosynthesis, including flavone synthase, flavanone 3-hydroxylase, flavonol synthase, anthocyanidin synthase, and leucoanthocyanidin reductase.
View Article and Find Full Text PDFB7-H3 (CD276), a member of the B7-family of immune checkpoint proteins, has been shown to have immunological and non-immunological effects promoting tumorigenesis [1, 2] and expression correlates with poor prognosis for many solid tumors, including cervical, ovarian and breast cancers [3-6]. We recently identified a tumor-cell autochthonous tumorigenic role for dimerization of the 4Ig isoform of B7-H3 (4Ig-B7-H3) [7], where 4Ig-B7-H3 dimerization activated tumor-intrinsic cellular proliferation and tumorigenesis pathways, providing a novel opportunity for therapeutic intervention. Herein, a live cell split-luciferase complementation strategy was used to visualize 4Ig-B7-H3 homodimerization in a high-throughput small molecule screen (HTS) to identify modulators of this protein-protein interaction (PPI).
View Article and Find Full Text PDFClin Transl Med
January 2025
Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China.
Introduction: Heart failure with preserved ejection fraction (HFpEF) is a complex condition characterized by metabolic dysfunction and myocardial lipotoxicity. The roles of PTEN-induced kinase 1 (PINK1) and peroxiredoxin-2 (Prdx2) in HFpEF pathogenesis remain unclear.
Objective: This study aimed to investigate the interaction between PINK1 and Prdx2 to mitigate cardiac diastolic dysfunction in HFpEF.
Sci Rep
January 2025
Department of Pathology and Laboratory Medicine, Collage of Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
Deoxyhypusine synthase (DHPS) is an enzyme encoded by the DHPS gene, with high expression in various cancers, including ovarian cancer (OC). DHPS regulates the translation initiation factor EIF5A, and EIF5A2 knockout inhibits OC tumor growth and metastasis by blocking the epithelial-to-mesenchymal transition (EMT) and the TGFβ pathway. In this study, we show that DHPS is amplified in OC patients, and its elevated expression correlates with poor survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!