Background: Visual perception of catheters and guidewires on x-ray fluoroscopy is essential for neurointervention. Endovascular robots with teleoperation capabilities are being developed, but they cannot 'see' intravascular devices, which precludes artificial intelligence (AI) augmentation that could improve precision and autonomy. Deep learning has not been explored for neurointervention and prior works in cardiovascular scenarios are inadequate as they only segment device tips, while neurointervention requires segmentation of the entire structure due to coaxial devices. Therefore, this study develops an automatic and accurate image-based catheter segmentation method in cerebral angiography using deep learning.

Methods: Catheters and guidewires were manually annotated on 3831 fluoroscopy frames collected prospectively from 40 patients undergoing cerebral angiography. We proposed a topology-aware geometric deep learning method (TAG-DL) and compared it with the state-of-the-art deep learning segmentation models, UNet, nnUNet and TransUNet. All models were trained on frontal view sequences and tested on both frontal and lateral view sequences from unseen patients. Results were assessed with centerline Dice score and tip-distance error.

Results: The TAG-DL and nnUNet models outperformed TransUNet and UNet. The best performing model was nnUNet, achieving a mean centerline-Dice score of 0.98 ±0.01 and a median tip-distance error of 0.43 (IQR 0.88) mm. Incorporating digital subtraction masks, with or without contrast, significantly improved performance on unseen patients, further enabling exceptional performance on lateral view fluoroscopy despite not being trained on this view.

Conclusions: These results are the first step towards AI augmentation for robotic neurointervention that could amplify the reach, productivity, and safety of a limited neurointerventional workforce.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnis-2023-020300DOI Listing

Publication Analysis

Top Keywords

deep learning
16
cerebral angiography
12
catheter segmentation
8
topology-aware geometric
8
geometric deep
8
catheters guidewires
8
view sequences
8
lateral view
8
unseen patients
8
deep
5

Similar Publications

Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.

View Article and Find Full Text PDF

A new vision of the role of the cerebellum in pain processing.

J Neural Transm (Vienna)

January 2025

Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.

The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.

View Article and Find Full Text PDF

Background: Recent advances in artificial intelligence have facilitated the automatic diagnosis of middle ear diseases using endoscopic tympanic membrane imaging.

Aim: We aimed to develop an automated diagnostic system for middle ear diseases by applying deep learning techniques to tympanic membrane images obtained during routine clinical practice.

Material And Methods: To augment the training dataset, we explored the use of generative adversarial networks (GANs) to produce high-quality synthetic tympanic images that were subsequently added to the training data.

View Article and Find Full Text PDF

Integrating Model-Informed Drug Development With AI: A Synergistic Approach to Accelerating Pharmaceutical Innovation.

Clin Transl Sci

January 2025

Global Biometrics and Data Management, Pfizer Research and Development, New York, New York, USA.

The pharmaceutical industry constantly strives to improve drug development processes to reduce costs, increase efficiencies, and enhance therapeutic outcomes for patients. Model-Informed Drug Development (MIDD) uses mathematical models to simulate intricate processes involved in drug absorption, distribution, metabolism, and excretion, as well as pharmacokinetics and pharmacodynamics. Artificial intelligence (AI), encompassing techniques such as machine learning, deep learning, and Generative AI, offers powerful tools and algorithms to efficiently identify meaningful patterns, correlations, and drug-target interactions from big data, enabling more accurate predictions and novel hypothesis generation.

View Article and Find Full Text PDF

Self-Driving Microscopes: AI Meets Super-Resolution Microscopy.

Small Methods

January 2025

Dept. Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.

The integration of Machine Learning (ML) with super-resolution microscopy represents a transformative advancement in biomedical research. Recent advances in ML, particularly deep learning (DL), have significantly enhanced image processing tasks, such as denoising and reconstruction. This review explores the growing potential of automation in super-resolution microscopy, focusing on how DL can enable autonomous imaging tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!