Nowadays, fisetin (FIS) is extensively studied as potent anticancer surrogate with a multitarget actions against various types of cancers including breast cancer. However, its poor aqueous solubility handicapped its clinical utility. The current work endeavored, for the first time, to develop FIS phytosomes (FIS-PHY) for improving its physicochemical properties and subsequently its anticancer activity. Optimization of FIS- phytosomes involved different preparation techniques (Thin film hydration and ethanol injection) and different FIS: phospholipid molar ratios (1:1, 1:2, and 1:3). Complex formation was confirmed by complexation efficiency, infrared spectroscopy (IR), solubility studies and transmission electron microscope. The optimized FIS-PHY of 1:1 M ratio (PHY1) exhibited a nanometric particle size of 233.01 ± 9.46 nm with homogenous distribution (PDI = 0.27), negative zeta potential of - 29.41 mV, 100% complexation efficiency and controlled drug release over 24 h. In-vitro cytotoxicity study showed 2.5-fold decrease in IC50 of PHY1 compared with free FIS. Also, pharmacodynamic studies confirmed the promoted cytotoxicity of PHY1 against breast cancer through modulating TGF-β1/MMP-9 molecular pathways of tumorigenesis. Overall, overcoming FIS drawbacks were successfully achieved through development of innovative biocompatible phytosomal system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2023.06.009DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
complexation efficiency
8
fis
5
self-assembled fisetin-phospholipid
4
fisetin-phospholipid complex
4
complex fisetin-integrated
4
fisetin-integrated phytosomes
4
phytosomes effective
4
effective delivery
4
delivery breast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!