Elastic proteins and derived biomaterials contain numerous tandemly repeated peptides along their sequences, ranging from a few copies to hundreds. These repetitions are responsible for their biochemical, biological and biomechanical properties. These sequences are considered to be intrinsically disordered, and the variations in their behavior are actually mainly due to their high flexibility and lack of stable secondary structures originating from their unique amino acid sequences. Consequently, the simulation of elastic proteins and large elastomeric biomaterials using classical molecular dynamics is an important challenge. Here, we propose a novel approach that allows the application of the DURABIN protocol to repeated elastin-like peptides (r-ELPs) in a simple way. Four large r-ELPs were studied to evaluate our method, which was developed for simulating extracellular matrix proteins at the mesoscopic scale. After structure clustering applied on molecular dynamic trajectories of constitutive peptides (5-mers and 6-mers), the main conformations were used as starting points to define the corresponding primitives, further used as rigid body fragments in our program. Contributions derived from electrostatic and molecular hydrophobicity potentials were tested to evaluate their influence on the interactions during simple mesoscopic simulations. The CHLORAINE approach, despite the thinner granularity due to the size of the patterns used, was included in the DURABIN protocol and emerges as a promising way to simulate elastic macromolecular systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsb.2023.107986 | DOI Listing |
BMC Oral Health
December 2024
Department of Orthodontics, Central Laboratory, Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School, 22th Zhongguancun South Ave, Beijing, 100081, China.
Background: Orthodontic tooth movement (OTM) relies on the remodeling of periodontal tissues, including the periodontal ligament (PDL) and alveolar bone. Collagen remodeling plays a crucial role during this process, allowing for the necessary changes in the PDL's structure and function. Endo180, an urokinase plasminogen activator receptor-associated protein, is a transmembrane receptor regulated collagen remodeling.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou, China.
Background: Pickering emulsions prepared with octenyl succinic anhydride-modified starch (OSAS) show significant promise as replacements for animal fat. However, the underlying mechanism of incorporating an OSAS-based Pickering emulsion into a myofibrillar protein (MP) gel and its impact on the gel properties remain poorly understood. In this study, the effects of OSAS at varying concentrations (0-10.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
Background: We investigated the effects of C-reactive protein (CRP) deposition on the vessel walls in abdominal aortic aneurysm (AAA) by analyzing spatially resolved changes in gene expression. Our aim was to elucidate the pathways that contribute to disease progression.
Methods: AAA specimens from surgically resected formalin-fixed paraffin-embedded tissues were categorized into the AAA-high CRP [serum CRP ≥ 0.
Food Chem
December 2024
Food and Soft Materials Research Group, Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada. Electronic address:
This study investigated the oleogelation of cellulose bead dispersions in a sunflower oil oleogel made with solvent-transferred whey protein isolate. The microstructure and rheology of the mixed gels depended on the ratio of hydrated cellulose beads to proteins (9:1, 8:2, 7:3, and 1:1). Two gel stabilization mechanisms were identified.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China; College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:
Biocompatible and degradable hydrogels are extensively utilized for the delivery and controlled release of bioactive agents. Chitosan/squid ring teeth protein (SRT) hydrogels (CH/SRTs) cross-linked by genipin were fabricated, and their gel properties and structural characteristics were analyzed across varying SRT contents. Additionally, the curcumin-release behavior of curcumin-loaded CH/SRTs (Cur-CH/SRTs) was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!