Assembly dynamics and structure of an aegerolysin, ostreolysin A6.

J Biol Chem

Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France. Electronic address:

Published: August 2023

Ostreolysin A6 (OlyA6) is an oyster mushroom-derived membrane-binding protein that, upon recruitment of its partner protein, pleurotolysin B, forms a cytolytic membrane pore complex. OlyA6 itself is not cytolytic but has been reported to exhibit pro-apoptotic activities in cell culture. Here we report the formation dynamics and the structure of OlyA6 assembly on a lipid membrane containing an OlyA6 high-affinity receptor, ceramide phosphoethanolamine, and cholesterol. High-speed atomic force microscopy revealed the reorganization of OlyA6 dimers from initial random surface coverage to 2D protein crystals composed of hexameric OlyA6 repeat units. Crystal growth took place predominantly in the longitudinal direction by the association of OlyA6 dimers, forming a hexameric unit cell. Molecular-level examination of the OlyA6 crystal elucidated the arrangement of dimers within the unit cell and the structure of the dimer that recruits pleurotolysin B for pore formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366546PMC
http://dx.doi.org/10.1016/j.jbc.2023.104940DOI Listing

Publication Analysis

Top Keywords

dynamics structure
8
olya6
8
olya6 dimers
8
unit cell
8
assembly dynamics
4
structure aegerolysin
4
aegerolysin ostreolysin
4
ostreolysin ostreolysin
4
ostreolysin olya6
4
olya6 oyster
4

Similar Publications

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.

Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).

View Article and Find Full Text PDF

Influence of CTAB Reverse Micellar Confinement on the Tetrahedral Structure of Liquid Water.

J Phys Chem B

January 2025

Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India.

The effect of confinement on the tetrahedral ordering of liquid water plays a vital role in controlling their microscopic structure and dynamics as well as their spectroscopic properties. In this article, we have performed the classical molecular dynamics simulations of four different CTAB/water/chloroform reverse micelles with varied water content to study how the tetrahedral ordering of nanoscale water inside reverse micellar confinement influences the microscopic dynamics and the structural relaxation of water···water hydrogen bonds and its impact on the low-frequency intermolecular vibrational bands. We have noticed from the results obtained from simulated trajectories the lowering trends of tetrahedral ordering of water pools in reverse micellar confinements as we move from bulk to confined and strictly confined environments.

View Article and Find Full Text PDF

Defining metabolic health is critical for the earlier reversing of metabolic dysfunction and disease, and fasting-based diagnosis may not adequately assess an individual's metabolic adaptivity under stress. We constructed a novel Health State Map (HSM) comprising a Health Phenotype Score (HPS) with fasting features alone and a Homeostatic Resilience Score (HRS) with five time-point features only ( = 30, 60, 90, 180, 240 min) following a standardized mixed macronutrient tolerance test (MMTT). Among 111 Chinese adults, when the same set of fasting and post-MMTT data as for the HSM was used, the mixed-score was highly correlated with the HPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!