Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxysterols play significant roles in many physiological and pathological processes including cancer. They modulate some of the cancer hallmarks pathways, influence the efficacy of anti-cancer drugs, and associate with patient survival. In this study, we aimed to analyze the role of 7-ketocholesterol (7-KC) in breast carcinoma cells and its potential modulation of the tamoxifen effect. 7-KC effects were studied in two estrogen receptor (ER)-positive (MCF-7 and T47D) and one ER-negative (BT-20) breast cancer cell lines. First, we tested the viability of cells in the presence of 7-KC. Next, we co-incubated cells with tamoxifen and sublethal concentrations of 7-KC. We also tested changes in caspase 3/7 activity, deregulation of the cell cycle, and changes in expression of selected genes/proteins in the presence of tamoxifen, 7-KC, or their combination. Finally, we analyzed the effect of 7-KC on cellular migration and invasion. We found that the presence of 7-KC slightly decreases the efficacy of tamoxifen in MCF-7 cells, while an increased effect of tamoxifen and higher caspase 3/7 activity was observed in the BT-20 cell line. In the T47D cell line, we did not find any modulation of tamoxifen efficacy by the presence of 7-KC. Expression analysis showed the deregulation in CYP1A1 and CYP1B1 with the opposite trend in MCF-7 and BT-20 cells. Moreover, 7-KC increased cellular migration and invasion potential regardless of the ER status. This study shows that 7-KC can modulate tamoxifen efficacy as well as cellular migration and invasion, making 7-KC a promising candidate for future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529436 | PMC |
http://dx.doi.org/10.1016/j.jsbmb.2023.106354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!