Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new, reversed-phase HPLC (RP-HPLC) method was developed for the simultaneous determination of the dipeptidyl-peptidase-IV-inhibitor antidiabetic drug vildagliptin (VIL) enantiomeric impurity and four other achiral related impurities. An initial screening was performed on five polysaccharide-type chiral stationary phases (Lux Amylose-1, Lux Amylose-2, Lux-Cellulose-1, Lux-Cellulose-2, Lux-Cellulose-3) in polar organic mode with methanol, ethanol, 2-propanol, or acetonitrile containing 0,1% diethylamine as mobile phase to identify the best conditions for the separation of VIL enantiomers. Lux-Cellulose-2 column was found to provide the best chiral resolution for VIL enantiomers. Further experiments were conducted using different aqueous-organic mobile phases to achieve the simultaneous chiral-achiral separation of the selected compounds. Experimental design-based optimization was performed by using a face-centered central composite design. The optimal separation conditions (Lux Cellulose-2 stationary phase, 45 °C, mobile phase consisting of methanol/water/diethylamine 80:20:0.2 (v/v/v), and 0.45 mL/min flow rate) provided baseline separation for all 6 compounds. The optimized method was validated according to the ICH guideline and proved to be reliable, specific, linear, precise, and accurate for the determination of at least 0.1% for all impurities in VIL samples. The validated method was applied for determinations from a commercially available drug formulation and proved to be suitable for routine quality control of both enantiomeric and organic impurities of VIL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2023.115495 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!