Numerous emerging per- and polyfluoroalkyl substances (PFASs) occur in the aquatic environment, posing a threat to aquatic ecosystems and human health. In this study, we conducted a nontarget analysis on 3 surface water samples and 92 tissue samples of 16 fish collected from the Yangtze River to investigate the patterns, tissue distribution, and environmental impacts of emerging PFASs. A total of 43 PFASs from 11 classes were identified, including 17 legacy PFASs and 26 emerging PFASs. Among the 43 PFASs, seven PFASs were reported in biota for the first time while five PFASs were reported in the environment for the first time. Chlorine substituted perfluoroalyl ether sulfonic acids were the major emerging PFASs detected in organisms. Our results showed that most emerging PFASs tended to accumulate in the liver whereas perfluorinated sulfonamides tended to accumulate in the blood, and all of the emerging PFASs accumulated less in the muscle. Methods for evaluating the persistence, bioaccumulation, and toxicity (PBT) of PFASs were developed by combining the in-silico methods and experimental methods. Long-chain PFASs were found to have extremely high PBT scores compared to short-chain PFASs. Additionally, most emerging PFASs exhibited comparable PBT characteristics with legacy PFASs, especially Cl-substituted PFASs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131868 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) are ubiquitous contaminants in environments, yet their co-occurrence and interactions remain insufficiently understood. In this study, we confirmed the concurrent presence of MPs and PFASs and their distinct distribution patterns in a wastewater treatment plant (WWTP) through a comprehensive sampling and analysis effort. Significant correlations ( < 0.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China. Electronic address:
The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China. Electronic address:
In the present study, we investigated the effects of a representative of the per- and polyfluoroalkyl substance (PFAS) chemical group, namely perfluorooctanoic acid (PFOA), and its alternatives (perfluorobutanoic acid [PFBA] and the hexafluoropropylene oxide dimer acid [GenX]) on bone homeostasis, a process that mainly depends on osteoblast (OB) and osteoclast (OC) activities at the cellular level. C3H10T1/2 cells and bone marrow macrophages (BMMs) were respectively induced into OBs and OCs, and treated with PFOA, PFBA, and GenX at doses of 0.25, 2.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China. Electronic address:
PM has a detrimental impact on human health and has become a focus of widespread concern. The tempo-spatial distribution of emerging pollutants has been extensively studied, while there is a scarcity of understanding their vertical distribution in atmospheric environment. Here we investigated the vertical profiles of phthalate esters (PAEs), organophosphate esters (OPEs), neonicotinoids (NEOs), and per-and polyfluorinated substances (PFASs) in PM at ground level (4.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China. Electronic address:
It is challenging to explore the complex interactions between perfluoroalkyl substances (PFASs) and microplastics in lake sediments. The partnership of perfluoroalkyl substances (PFASs) and microplastics in lake sediments are difficult to determine experimentally. This study utilized sediment cores from Taihu Lake to reconstruct the coexistence history and innovatively reveal the collaboration between PFASs and microplastics by using post-hoc interpretable machine learning methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!