Receive coils used in small animal MRI are rigid, inflexible surface loops that do not conform to the anatomy being imaged. The recent trend toward design of stretchable coils that are tailored to fit any anatomical curvature has been focused on human imaging. This work demonstrates the application of stretchable coils for small animal imaging at 7T. A stretchable coil measuring 3.5 × 3.5 cm was developed for acquisition of rat brain and spine images. The SNR maps of the stretchable coil were compared with those of a traditional flexible PCB coil and a commercial surface coil. Stretch and conformance testing of the coil was performed. Ex vivo images of rat brain and spine from the stretchable a coil was acquired using T FLASH and T Turbo RARE sequences. The axial phantom SNR maps showed that the stretchable coil provided 48.5% and 42.8% higher SNR than the commercial coil for T-w and T-w images within the defined ROI. A 33% increase in average penetration depth was observed within the ROI using the stretchable coil when compared to the commercial coil. The ex-vivo rat brain and spine images showed distinguishable anatomical details. Stretching the coil reduced the resonant frequency with reduction in SNR, while the conformance to varying sample volumes increased the resonant frequency with decreased SNR. This study also features an open-source plug-and-play system with preamplifiers that can be used to interface surface coils with the 7T Bruker scanner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2023.107510 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Textile and Clothing College, Qingdao University, Qingdao 266071, China.
Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA.
A Customized wound patch for Advanced tissue Regeneration with Electric field (CARE), featuring an autonomous robot arm printing system guided by a computer vision-enabled guidance system for fast image recognition is introduced. CARE addresses the growing demand for flexible, stretchable, and wireless adhesive bioelectronics tailored for electrotherapy, which is suitable for rapid adaptation to individual patients and practical implementation in a comfortable design. The visual guidance system integrating a 6-axis robot arm enables scans from multiple angles to provide a 3D map of complex and curved wounds.
View Article and Find Full Text PDFSoft Robot
September 2024
Department of Mechanical Engineering, Seoul National University, Seoul, South Korea.
We propose a soft electromagnetic sliding actuator that provides various planar motions to construct highly compliant actuation systems. The actuator is composed of a fully soft actuation base (stator) for generating electromagnetic and magnetic forces and a rigid neodymium magnet (slider) that slides on the actuation base. A parallel liquid-metal coil array in the stator is designed based on theoretical modeling and an optimization process to maximize the electromagnetic field density.
View Article and Find Full Text PDFBiomater Sci
October 2024
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
J Radiol Prot
September 2024
Department of Endovascular Neurosurgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan.
This study aimed to evaluate the radiation doses (peak skin dose (PSD) and bilateral lens dose) for each interventional neuroradiology procedure. A direct measurement system consisting of small radiophotoluminescence glass dosimeter chips and a dosimetry cap made of thin stretchable polyester was used for radiation dosimetry. The mean PSDs for each procedure were 1565 ± 590 mGy (simple technique coil embolization (STCE) cases), 1851 ± 825 mGy (balloon-assisted coil embolization (BACE) cases), 2583 ± 967 mGy (stent-assisted coil embolization (SACE) cases), 1690 ± 597 mGy (simple flow-diverter stenting (FDS) cases), and 2214 ± 726 mGy (FDS + coiling cases).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!