A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unsupervised registration for liver CT-MR images based on the multiscale integrated spatial-weight module and dual similarity guidance. | LitMetric

Unsupervised registration for liver CT-MR images based on the multiscale integrated spatial-weight module and dual similarity guidance.

Comput Med Imaging Graph

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China. Electronic address:

Published: September 2023

Purpose: Multimodal registration is a key task in medical image analysis. Due to the large differences of multimodal images in intensity scale and texture pattern, it is a great challenge to design distinctive similarity metrics to guide deep learning-based multimodal image registration. Besides, since the limitation of the small receptive field, existing deep learning-based methods are mainly suitable for small deformation, but helpless for large deformation. To address the above issues, we present an unsupervised multimodal image registration method based on the multiscale integrated spatial-weight module and dual similarity guidance.

Methods: In this method, a U-shape network with our multiscale integrated spatial-weight module is embedded into a multi-resolution image registration architecture to achieve end-to-end large deformation registration, where the spatial-weight module can effectively highlight the regions with large deformation and aggregate discriminative features, and the multi-resolution architecture further helps to solve the optimization problem of the network in a coarse-to-fine pattern. Furthermore, we introduce a special loss function based on dual similarity, which represents both global gray-scale similarity and local feature similarity, to optimize the unsupervised multimodal registration network.

Results: We verified the effectiveness of the proposed method on liver CT-MR images. Experimental results indicate that the proposed method achieves the optimal DSC value and TRE value of 92.70 ± 1.75(%) and 6.52 ± 2.94(mm), compared with other state-of-the-art registration algorithms.

Conclusion: The proposed method can accurately estimate the large deformation field by aggregating multiscale features, and achieve higher registration accuracy and fast registration speed. Comparative experiments also demonstrate the effectiveness and generalization ability of the algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2023.102260DOI Listing

Publication Analysis

Top Keywords

spatial-weight module
16
large deformation
16
multiscale integrated
12
integrated spatial-weight
12
dual similarity
12
image registration
12
proposed method
12
registration
9
liver ct-mr
8
ct-mr images
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!