AI Article Synopsis

  • The study identifies and analyzes 51 GRAS genes in white lupin, revealing their distribution across 10 phylogenetic clades and significant conservation patterns among subfamilies.
  • Segmental duplication was found to be a major factor in the expansion of these genes, with specific LaGRAS genes showing high expression in roots, especially during phosphorus (P) acquisition.
  • Transgenic experiments confirmed that LaGRAS38 and LaGRAS39 enhance root growth and phosphorus uptake, highlighting their potential role in improving P use efficiency in legume crops.

Article Abstract

The GRAS transcription factors play an indispensable role in plant growth and responses to environmental stresses. The GRAS gene family has extensively been explored in various plant species; however, the comprehensive investigation of GRAS genes in white lupin remains insufficient. In this study, bioinformatics analysis of white lupin genome revealed 51 LaGRAS genes distributed into 10 distinct phylogenetic clades. Gene structure analyses revealed that LaGRAS proteins were considerably conserved among the same subfamilies. Notably, 25 segmental duplications and a single tandem duplication showed that segmental duplication was the major driving force for the expansion of GRAS genes in white lupin. Moreover, LaGRAS genes exhibited preferential expression in young cluster root and mature cluster roots and may play key roles in nutrient acquisition, particularly phosphorus (P). To validate this, RT-qPCR analysis of white lupin plants grown under +P (normal P) and -P (P deficiency) conditions elucidated significant differences in the transcript level of GRAS genes. Among them, LaGRAS38 and LaGRAS39 were identified as potential candidates with induced expression in MCR under -P. Additionally, white lupin transgenic hairy root overexpressing OE-LaGRAS38 and OE-LaGRAS39 showed increased root growth, and P concentration in root and leaf compared to those with empty vector control, suggesting their role in P acquisition. We believe this comprehensive analysis of GRAS members in white lupin is a first step in exploring their role in the regulation of root growth, tissue development, and ultimately improving P use efficiency in legume crops under natural environments.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.13962DOI Listing

Publication Analysis

Top Keywords

white lupin
28
root growth
12
gras genes
12
increased root
8
genes white
8
analysis white
8
revealed lagras
8
lagras genes
8
white
7
lupin
7

Similar Publications

White lupin (Lupinus albus L.) is an ancient grain legume that is still undergoing improvement of domestication traits, including vernalization-responsiveness, providing frost tolerance and preventing winter flowering in autumn-sowing agriculture, and vernalization-independence, conferring drought escape by rapid flowering in spring-sowing. A recent genome-wide association study highlighted several loci significantly associated with the most contrasting phenotypes, including deletions in the promoter of the FLOWERING LOCUS T homolog, LalbFTc1, and some DArT-seq/silicoDArT loci.

View Article and Find Full Text PDF

Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted.

View Article and Find Full Text PDF

The changing climate could expand northwards in Europe the autumn sowing of cool-season grain legumes to take advantage of milder winters and to escape the increasing risk of terminal drought. Greater frost tolerance is a key breeding target because sudden frosts following mild-temperature periods may produce high winter mortality of insufficiently acclimated plants. The increasing year-to-year climate variation hinders the field-based selection for frost tolerance.

View Article and Find Full Text PDF

This study was examined to optimize extrusion conditions (barrel temperature, feed moisture, and blending ratios of rice, lupin, and pumpkin flour) during processing high-quality extruded products using a twin-screw extruder. A three-factor with three-level response surface methodology with a Box-Behnken design, was applied to evaluate the effects of selected processing conditions: blending ratios of lupin (10-20 %), barrel temperature (115-155 °C) and feed moisture content (14-20 %) on the functional, nutritional and sensory characteristics of the produced snack food. The independent variables significantly affected the nutritional, functional, and physical properties of the extruded snack food.

View Article and Find Full Text PDF

Bacillus amyloliquefaciens promotes cluster root formation of white lupin under low phosphorus by mediating auxin levels.

Plant Physiol

December 2024

Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

White lupin (Lupinus albus L.) produces cluster roots to acquire more phosphorus under phosphorus deficiency. Bacillus amyloliquefaciens SQR9 contributes to plant growth, but whether and how it promotes cluster root formation in white lupin remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!