The phase behavior of polymer blend electrolytes comprising poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA)/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was determined using a combination of light and small angle neutron scattering (SANS) experiments. The results at a fixed temperature (110 °C) are presented on a PEO concentration versus salt (LiTFSI) concentration plot. The blends are miscible at all PEO concentrations in the absence of salt. With added salt, a region of immiscibility is obtained in PEO-lean polymer blend electrolytes; blends rich in PEO remain miscible at most salt concentrations. A narrow region of immiscibility juts into the miscible region, giving the phase diagram a chimney-like appearance. The data are qualitatively consistent with a simple extension of Flory-Huggins theory with a composition-dependent Flory-Huggins interaction parameter, χ, that was determined independently from SANS data from homogeneous blend electrolytes. Phase diagrams like the one we obtained were anticipated by self-consistent field theory calculations that account for correlations between ions. The relationship between these theories and measured χ remains to be established.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.3c00285 | DOI Listing |
Int J Mol Sci
December 2024
Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Spectroscopy Department, Physics Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
In the original publication [...
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a highly promising biodegradable and bio-based thermoplastic recognized for its environmental benefits and potential versatility. However, its industrial adoption has been limited due to its inherent brittleness and suboptimal processability. Despite these challenges, PHBV's performance can be tailored for a wide range of applications through strategic modifications, particularly by blending it with other biodegradable polymers or reinforcing it with natural fibers and bio-based fillers.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Sustainable Polymer & Innovative Composite Materials Research Group, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
This study investigates the synergistic effects of incorporating modified zinc oxide-silica (ZnO-SiO) into tire waste (TW) and epoxidized natural rubber (ENR) blends, with a focus on crosslinking dynamics, mechanical reinforcement, and antibacterial activity. The addition of ZnO-SiO significantly enhanced crosslink density, as evidenced by increased torque and accelerated cure rates. An optimal concentration of 10 phr was found to yield the highest performance.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Industrial Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
This study explored the tensile and impact strength of polylactic acid (PLA) through the incorporation of sisal and coir fibers. Hybrid natural fiber composites were prepared using PLA as the matrix and sisal and coir fibers as the reinforcements. The hybrid composites were prepared with an internal mixer, followed by compression molding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!