Cleaning is essential to ensuring the safe processing of reusable medical devices, and most manufacturers' instructions for use (IFUs) specify that clinical soil should not be allowed to dry on devices. If soil is allowed to dry, the cleaning challenge could be increased due to change in soil solubility. As a result, an additional step could be needed to reverse the chemical changes and return a device to a state where cleaning instructions are appropriate. Using a solubility test method and surrogate medical devices, the experiment described in this article challenged eight remediation conditions to which a reusable medical device might be exposed if soil is dried on a device. These conditions included soaking with water or neutral pH, enzymatic, or alkaline detergent cleaning agents, as well as conditioning with an enzymatic humectant foam spray. The results demonstrated that only the alkaline cleaning agent was able to solubilize the extensively dried soil as effectively as the control, with a 15-minute soak being as effective as a 60-minute soak. Although opinions vary, the overall data demonstrating the risk and chemical changes that occur when soil dries on medical devices are limited. Further, in cases in which soil is allowed to dry on devices for an extended time outside of the guidance from leading practices and manufacturers' IFUs, what additional steps or processes may be necessary to ensure that cleaning can be effective? This experiment demonstrated the effectiveness of a soaking step with an alkaline cleaning agent as an additional step if soil is dried on reusable medical devices, thus reversing the effect of an extended soil dry time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508861PMC
http://dx.doi.org/10.2345/0899-8205-57.2.44DOI Listing

Publication Analysis

Top Keywords

medical devices
16
reusable medical
12
soil allowed
12
allowed dry
12
soil
10
cleaning
8
extended soil
8
soil dry
8
dry devices
8
additional step
8

Similar Publications

The European Society of Cardiology (ESC) has updated its guidelines on cardiac pacing and cardiac resynchronisation. As the majority are class II recommendations (61%) and based on expert opinion (59%), a critical appraisal for the Dutch situation was warranted. A working group has been established, consisting of specialists in cardiology, cardiothoracic surgery, geriatrics, allied professionals in cardiac pacing, and patient organisations with support from the Knowledge Institute of the Dutch Association of Medical Specialists.

View Article and Find Full Text PDF

Smartphone-based non-invasive detection of salivary uric acid based on the fluorescence quenching of gleditsia sinensis carbon dots.

Mikrochim Acta

January 2025

Guizhou Province, Qianzhi Mingguang Soaphorn Rice Processing Base, Zhijin County, Maochang Town, Bijie CityBijie City, 552103, China.

A smartphone-based non-invasive method was developed for salivary uric acid detection using Gleditsia Sinensis carbon dots (GS-CDs). The GS-CDs synthesized by the one-pot hydrothermal method emitted blue fluorescence at a maximum excitation wavelength of 350 nm and had good fluorescence stability in the presence of different ions, while showing selectivity to uric acid solution. The ability of uric acid (UA) to quench the fluorescent substances present in the GS-CDs, was confirmed through HPLC-FLD and LC-MS, FTIR and XPS.

View Article and Find Full Text PDF

Novel technique and outcomes of umbilical reconstruction during cytoreductive surgery; a multi-centre study.

Tech Coloproctol

January 2025

Peritonectomy and Liver Cancer Unit, Department of Surgery, St George Hospital, Kogarah, NSW, Australia.

Background: The goal of cytoreductive surgery for peritoneal malignancy is to remove all macroscopic disease, which occasionally requires the excision of the umbilicus. While the absence of the umbilicus can be aesthetically undesirable for patients, umbilical reconstruction is rarely performed due to the perceived complexity and increased risk of wound infections (Sakata et al. in Colorectal Dis 23:1153-1157, 2021).

View Article and Find Full Text PDF

The present study investigates the potential contribution of Photobiomodulation (PBM) to the regeneration of the bone following the extraction of the first mandibular molar in rats. The study evaluates the efficacy of PBM, using both Low-Level Laser Therapy (LLLT) and Light-Emitting Diode Therapy (LEDT), as promotors of osteoblastic activity and the formation of new bone. Study design, setting, and sample: 45 male Wistar rats were divided randomly into three groups of 15 individuals - (i) control group (left lower molar removed only), (ii) the LLL group (molar removed, followed by LLLT), and (iii) the LED group (molar removed, followed by LEDT).

View Article and Find Full Text PDF

Self-sufficient biocatalytic cascade for the continuous synthesis of danshensu in flow.

Appl Microbiol Biotechnol

January 2025

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.

A new strategy has been developed to successfully produce the active component danshensu ex vivo. For this purpose, phenylalanine dehydrogenase from Bacillus sphaericus was combined with the novel hydroxyphenylpyruvate reductase from Mentha x piperita, thereby providing an in situ cofactor regeneration throughout the conversion process. The purified enzymes were co-immobilized and subsequently employed in batch biotransformation, resulting in 60% conversion of 10 mM L-dopa within 24 h, with a catalytic amount of NAD as cofactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!