A steady-state visual evoked potential (SSVEP)- based brain-computer interface (BCI) can either achieve high classification accuracy in the case of sufficient training data or suppress the training stage at the cost of low accuracy. Although some researches attempted to conquer the dilemma between performance and practicality, a highly effective approach has not yet been established. In this paper, we propose a canonical correlation analysis (CCA)-based transfer learning framework for improving the performance of an SSVEP BCI and reducing its calibration effort. Three spatial filters are optimized by a CCA algorithm with intra- and inter-subject EEG data (IISCCA), two template signals are estimated separately with the EEG data from the target subject and a set of source subjects and six coefficients are yielded by correlation analysis between a testing signal and each of the two templates after they are filtered by each of the three spatial filters. The feature signal used for classification is extracted by the sum of squared coefficients multiplied by their signs and the frequency of the testing signal is recognized by template matching. To reduce the individual discrepancy between subjects, an accuracy-based subject selection (ASS) algorithm is developed for screening those source subjects whose EEG data are more similar to those of the target subject. The proposed ASS-IISCCA integrates both subject-specific models and subject-independent information for the frequency recognition of SSVEP signals. The performance of ASS-IISCCA was evaluated on a benchmark data set with 35 subjects and compared with the state-of-the-art algorithm task-related component analysis (TRCA). The results show that ASS-IISCCA can significantly improve the performance of SSVEP BCIs with a small number of training trials from a new user, thus helping to facilitate their applications in real world.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2023.3288397DOI Listing

Publication Analysis

Top Keywords

eeg data
12
canonical correlation
8
transfer learning
8
learning framework
8
correlation analysis
8
performance ssvep
8
three spatial
8
spatial filters
8
data target
8
target subject
8

Similar Publications

Background/objectives: Evidence suggests nasal airflow resistance reduces after rapid maxillary expansion (RME). However, the medium-term effects of RME on upper airway (UA) airflow characteristics when normal craniofacial development is considered are still unclear. This retrospective cohort study used computer fluid dynamics (CFD) to evaluate the medium-term changes in the UA airflow (pressure and velocity) after RME in two distinct age-based cohorts.

View Article and Find Full Text PDF

The brain develops most rapidly during pregnancy and early neonatal months. While prior electrophysiological studies have shown that aperiodic brain activity undergoes changes across infancy to adulthood, the role of gestational duration in aperiodic and periodic activity remains unknown. In this study, we aimed to bridge this gap by examining the associations between gestational duration and aperiodic and periodic activity in the EEG power spectrum in both neonates and toddlers.

View Article and Find Full Text PDF

Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).

View Article and Find Full Text PDF

Unlabelled: While visual working memory (WM) is strongly associated with reductions in occipitoparietal 8-12 Hz alpha power, the role of 4-7 Hz frontal midline theta power is less clear, with both increases and decreases widely reported. Here, we test the hypothesis that this theta paradox can be explained by non-oscillatory, aperiodic neural activity dynamics. Because traditional time-frequency analyses of electroencephalopgraphy (EEG) data conflate oscillations and aperiodic activity, event-related changes in aperiodic activity can manifest as task-related changes in apparent oscillations, even when none are present.

View Article and Find Full Text PDF

Delays in language often co-occur among toddlers diagnosed with autism. Despite the high prevalence of language delays, the neurobiology underlying such language challenges remains unclear. Prior research has shown reduced EEG power across multiple frequency bands in 3-to-6-month-old infants with an autistic sibling, followed by accelerated increases in power with age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!