Chiral separation techniques play a crucial role in the pharmaceutical industry, where the enantiomeric purity of drugs can have a significant impact on their efficacy and safety. Macrocyclic antibiotics are highly effective chiral selectors used in various chiral separation techniques, including LC, HPLC, SMB, and TLC, offering reproducible results and a wide range of applications. However, developing robust and efficient immobilization mechanisms for these chiral selectors remains a challenge. This review article focuses on various immobilization approaches, such as immobilization, coating, encapsulation, and photosynthesis, that have been applied to immobilize macrocyclic antibiotics on their support. Commercially available macrocyclic antibiotics for conventional liquid chromatography include Vancomycin, Norvancomycin, Eremomycin, Teicoplanin, Ristocetin A, Rifamycin, Avoparcin, Bacitracin, and others. In addition, capillary (nano) liquid chromatography has also been used in chiral separation utilizing Vancomycin, Polymyxin B, Daptomycin, and Colistin Sulfate. Macrocyclic antibiotic-based CSPs have been extensively applied due to their reproducible results, ease of use, and broad range of applications, capable of separating a large number of racemates.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408347.2023.2224442DOI Listing

Publication Analysis

Top Keywords

macrocyclic antibiotics
16
chiral selectors
12
liquid chromatography
12
chiral separation
12
effective chiral
8
separation techniques
8
range applications
8
chiral
6
macrocyclic
5
antibiotics effective
4

Similar Publications

Simultaneous separation of the enantiomers of six anticoagulant rodenticides using chiral supercritical fluid chromatography-mass spectrometry.

J Chromatogr A

December 2024

I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Dept. Analytical Chemistry, Faculty of Sciences, University of Valladolid 47011, Valladolid, Spain. Electronic address:

The simultaneous separation of the enantiomers of six anticoagulant rodenticides, derived from 4-hydroxycoumarin, has been studied in this work. Ten different stationary phases (zwitterionic, Pirkle-type, polysaccharides and macrocyclic antibiotics derivatives) were evaluated by using supercritical fluid chromatography coupled to two different detectors (circular dichroism and mass spectrometry-single quadrupole). The effect of the type of organic modifier and temperature on the chiral separation was investigated, and the best results were obtained with the column Regis S,S-Whelk-O1 at 25 °C when using a gradient elution program with methanol as organic modifier.

View Article and Find Full Text PDF

Targeting ERBB3 and AKT to overcome adaptive resistance in EML4-ALK-driven non-small cell lung cancer.

Cell Death Dis

December 2024

Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.

The fusion event between EML4 and ALK drives a significant oncogenic activity in 5% of non-small cell lung cancer (NSCLC). Even though potent ALK-tyrosine kinase inhibitors (ALK-TKIs) are successfully used for the treatment of EML4-ALK-positive NSCLC patients, a subset of those patients eventually acquire resistance during their therapy. Here, we investigate the kinase responses in EML4-ALK V1 and V3-harbouring NSCLC cancer cells after acute inhibition with ALK TKI, lorlatinib (LOR).

View Article and Find Full Text PDF

Intestinal bacterial infections have become a significant threat to human health. However, the current typical antibiotic-based therapies not only contribute to drug resistance but also disrupt gut microbiota balance, resulting in additional adverse effects on life activities. There is an urgent need to develop new antibacterial materials that selectively eliminate pathogenic bacteria without disrupting beneficial bacterial communities or promoting drug resistance.

View Article and Find Full Text PDF

Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product.

View Article and Find Full Text PDF

Biosynthesis of Antimicrobial Ornithine-Containing Lacticin 481 Analogues by Use of a Combinatorial Biosynthetic Pathway in .

ACS Synth Biol

December 2024

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands.

Lacticin 481, a ribosomally synthesized and post-translationally modified peptide (RiPP), exhibits antimicrobial activity, for which its characteristic lanthionine and methyllanthionine ring structures are essential. The post-translational introduction of (methyl)lanthionines in lacticin 481 is catalyzed by the enzyme LctM. In addition to macrocycle formation, various other post-translational modifications can enhance and modulate the chemical and functional diversity of antimicrobial peptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!