Minimally invasive donor hepatectomy (MIDH) is a relatively novel procedure that can potentially increase donor safety and contribute to faster rehabilitation of donors. After an initial period in which donor safety was not effectively validated, MIDH currently seems to provide improved results, provided that it is conducted by experienced surgeons. Appropriate selection criteria are crucial to achieve better outcomes in terms of complications, blood loss, operative time, and hospital stay. Beyond a pure laparoscopic technique, various approaches have been recommended such as hand-assisted, laparoscopic-assisted, and robotic donation. The latter has shown equal outcomes compared to open and laparoscopic approaches. A steep learning curve seems to exist in MIDH, mainly due to the fragility of the liver parenchyma and the experience needed for adequate control of bleeding. This review investigated the challenges and the opportunities of MIDH and the barriers to its global dissemination. Surgeons need expertise in liver transplantation, hepatobiliary surgery, and minimally invasive techniques to perform MIDH. Barriers can be categorized into surgeon-related, institutional-related, and accessibility. More robust data and the creation of international registries are needed for further evaluation of the technique and the acceptance from more centers worldwide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277954 | PMC |
http://dx.doi.org/10.4240/wjgs.v15.i5.776 | DOI Listing |
Surg Endosc
January 2025
Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, China.
Background: Submucosal tunneling endoscopic resection (STER) is considered an effective, safe and minimally invasive treatment for esophageal subepithelial lesions (SELs) with maximal dilameter less than 3.0 cm, yet its efficacy for lesions over 3.0 cm remains unclear.
View Article and Find Full Text PDFCurr Res Transl Med
January 2025
Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom.
This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks.
View Article and Find Full Text PDFMultimed Man Cardiothorac Surg
January 2025
New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom.
Robotic-assisted thoracic surgery has become increasingly utilized in recent years. Complex lung cancer resection surgery can be performed using a robotic approach. It facilitates 3-dimentional visualization of structures, enhanced manipulation of tissues and precise movements.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.
Purpose: To evaluate the feasibility of robot-assisted ureteral reconstruction as a minimally invasive alternative to open surgery for managing ureteric complications in transplanted kidneys.
Materials And Methods: From January 2020 to December 2023, robot-assisted ureteral reconstruction was performed on fifteen kidney transplant patients with vesicoureteral reflux (VUR) or ureteral stricture who had previously failed endoscopic treatments.
Results: Twelve females and three males, with a mean age of 48.
Investig Clin Urol
January 2025
Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.
The global increase in urolithiasis prevalence has led to a shift towards minimally invasive procedures, such as retrograde intrarenal surgery, supported by advancements in laser technologies for lithotripsy. Pulsed lasers, particularly the holmium YAG and the newer thulium fiber laser, have significantly transformed the management of upper urinary tract stones. However, the use of high-power lasers in these procedures introduces risks of heat-related injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!