Angelman syndrome (AS) is a rare pediatric neurological condition in which patients most commonly present with inappropriate laughter, microcephaly, speech difficulties, seizures, and movement disorders. AS can be diagnosed clinically and confirmed with genetic testing. In this case report, the patient presented with 9.3% weight loss at two days of age. Although there were multiple attempts at lactational counseling and nutritional guidance, the patient was admitted to the hospital due to failure to thrive. Due to continued global developmental delay and upper and lower extremities hypotonia by the age of nine months, the patient was referred to a neurologist. Brain MRI was negative, and genetic testing revealed 15q11.2q13.1 deletion, which is consistent with AS. Through different therapies and intervention, the patient showed slow improvements in symptoms. This case illustrates the importance of early recognition of nonspecific clinical manifestations of AS. The general management for all AS patients includes physical therapy, speech therapy, mobility support devices, education, and behavioral therapy as they progress through life. Establishing an early diagnosis has potential long-term benefits of improved quality of life and outcomes for patients via early interventions such as physical therapy starting at the age of six months to improve gross motor function. When infants present with nonspecific clinical presentations such as failure to thrive and hypotonia, clinicians should maintain a lower threshold for suspecting genetic conditions, which will facilitate early diagnosis of AS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279475 | PMC |
http://dx.doi.org/10.7759/cureus.39271 | DOI Listing |
Nat Commun
January 2025
Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Lipid nanoparticles (LNPs) are the preeminent non-viral drug delivery vehicle for mRNA-based therapies. Immense effort has been placed on optimizing the ionizable lipid (IL) structure, which contains an amine core conjugated to lipid tails, as small molecular adjustments can result in substantial changes in the overall efficacy of the resulting LNPs. However, despite some advancements, a major barrier for LNP delivery is endosomal escape.
View Article and Find Full Text PDFChembiochem
January 2025
Departments of Biology and Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78467, Konstanz, Germany.
The ubiquitin (Ub) ligase E6AP, encoded by the UBE3A gene, has been causally associated with human diseases including cervical cancer and Angelman syndrome, a neurodevelopmental disorder. Yet, our knowledge about disease-relevant substrates of E6AP is still limited, presumably because at least some of these interactions are rather transient, a phenomenon observed for many enzyme-substrate interactions. Here, we introduce a novel approach to trap such potential transient interactions by combining a stable E6AP-Ub conjugate mimicking the active state of this enzyme with photo-crosslinking (PCL) followed by affinity enrichment coupled to mass spectrometry (AE-MS).
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Gait disturbance is a common motor symptom in Angelman syndrome (AS), but its characteristics have been poorly studied quantitatively. This study aimed to analyze gait characteristics in school-age children with AS using three-dimensional gait analysis (3DGA). Patients with clinically and genetically confirmed AS and healthy children aged 6-15 years were included.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.
Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!